On periodic solutions of non-autonomous second order Hamiltonian systems
Applications of Mathematics (2010)
- Volume: 55, Issue: 5, page 373-384
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topZhang, Xingyong, and Zhou, Yinggao. "On periodic solutions of non-autonomous second order Hamiltonian systems." Applications of Mathematics 55.5 (2010): 373-384. <http://eudml.org/doc/38134>.
@article{Zhang2010,
abstract = {The purpose of this paper is to study the existence of periodic solutions for the non-autonomous second order Hamiltonian system \begin\{equation*\} \{\left\lbrace \begin\{array\}\{ll\} \ddot\{u\}(t)=\nabla F(t,u(t)),\hspace\{5.0pt\}\text\{a.e.\} \ t\in [0,T],\\ u(0)-u(T)=\dot\{u\}(0)-\dot\{u\}(T)=0. \end\{array\}\right.\} \end\{equation*\}
Some new existence theorems are obtained by the least action principle.},
author = {Zhang, Xingyong, Zhou, Yinggao},
journal = {Applications of Mathematics},
keywords = {periodic solution; critical point; non-autonomous second-order system; Sobolev inequality; periodic solution; critical point; non-autonomous second-order system; Sobolev inequality},
language = {eng},
number = {5},
pages = {373-384},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On periodic solutions of non-autonomous second order Hamiltonian systems},
url = {http://eudml.org/doc/38134},
volume = {55},
year = {2010},
}
TY - JOUR
AU - Zhang, Xingyong
AU - Zhou, Yinggao
TI - On periodic solutions of non-autonomous second order Hamiltonian systems
JO - Applications of Mathematics
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 5
SP - 373
EP - 384
AB - The purpose of this paper is to study the existence of periodic solutions for the non-autonomous second order Hamiltonian system \begin{equation*} {\left\lbrace \begin{array}{ll} \ddot{u}(t)=\nabla F(t,u(t)),\hspace{5.0pt}\text{a.e.} \ t\in [0,T],\\ u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0. \end{array}\right.} \end{equation*}
Some new existence theorems are obtained by the least action principle.
LA - eng
KW - periodic solution; critical point; non-autonomous second-order system; Sobolev inequality; periodic solution; critical point; non-autonomous second-order system; Sobolev inequality
UR - http://eudml.org/doc/38134
ER -
References
top- Berger, M. S., Schechter, M., 10.1016/0001-8708(77)90001-9, Adv. Math. 25 (1977), 97-132. (1977) Zbl0354.47025MR0500336DOI10.1016/0001-8708(77)90001-9
- Fonda, A., Gossez, J.-P., Semicoercive variational problems at resonance: An abstract approach, Differ. Integral Equ. 3 (1990), 695-708. (1990) Zbl0727.35056MR1044214
- Ma, J., Tang, C. L., 10.1016/S0022-247X(02)00636-4, J. Math. Anal. Appl. 275 (2002), 482-494. (2002) MR1943760DOI10.1016/S0022-247X(02)00636-4
- Mawhin, J., Willem, M., Critical Point Theory and Hamiltonian Systems, Springer Berlin (1989). (1989) Zbl0676.58017MR0982267
- Rabinowitz, P. H., 10.1002/cpa.3160330504, Commun. Pure Appl. Math. 33 (1980), 609-633. (1980) Zbl0425.34024MR0586414DOI10.1002/cpa.3160330504
- Tang, C. L., 10.1006/jmaa.1995.1044, J. Math. Anal. Appl. 189 (1995), 671-675. (1995) MR1312546DOI10.1006/jmaa.1995.1044
- Tang, C. L., 10.1006/jmaa.1996.0327, J. Math. Anal. Appl. 202 (1996), 465-469. (1996) MR1406241DOI10.1006/jmaa.1996.0327
- Tang, C. L., 10.1016/S0362-546X(97)00493-8, Nonlinear Anal., Theory Methods Appl. 32 (1998), 299-304. (1998) Zbl0949.34032MR1610641DOI10.1016/S0362-546X(97)00493-8
- Wu, X. P., Tang, C. L., 10.1006/jmaa.1999.6408, J. Math. Anal. Appl. 236 (1999), 227-235. (1999) MR1704579DOI10.1006/jmaa.1999.6408
- Zhao, F. K., Wu, X., 10.1016/j.jmaa.2004.01.041, J. Math. Anal. Appl. 296 (2004), 422-434. (2004) MR2075174DOI10.1016/j.jmaa.2004.01.041
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.