Ridgelet transform on tempered distributions

R. Roopkumar

Commentationes Mathematicae Universitatis Carolinae (2010)

  • Volume: 51, Issue: 3, page 431-439
  • ISSN: 0010-2628

Abstract

top
We prove that ridgelet transform R : 𝒮 ( 2 ) 𝒮 ( 𝕐 ) and adjoint ridgelet transform R * : 𝒮 ( 𝕐 ) 𝒮 ( 2 ) are continuous, where 𝕐 = + × × [ 0 , 2 π ] . We also define the ridgelet transform on the space 𝒮 ' ( 2 ) of tempered distributions on 2 , adjoint ridgelet transform * on 𝒮 ' ( 𝕐 ) and establish that they are linear, continuous with respect to the weak * -topology, consistent with R , R * respectively, and they satisfy the identity ( * ) ( u ) = u , u 𝒮 ' ( 2 ) .

How to cite

top

Roopkumar, R.. "Ridgelet transform on tempered distributions." Commentationes Mathematicae Universitatis Carolinae 51.3 (2010): 431-439. <http://eudml.org/doc/38139>.

@article{Roopkumar2010,
abstract = {We prove that ridgelet transform $R:\mathcal \{S\}(\mathbb \{R\}^2)\rightarrow \mathcal \{S\} (\mathbb \{Y\})$ and adjoint ridgelet transform $R^\ast :\mathcal \{S\}(\mathbb \{Y\}) \rightarrow \mathcal \{S\}(\mathbb \{R\}^2)$ are continuous, where $\mathbb \{Y\}=\mathbb \{R\}^+\times \mathbb \{R\}\times [0,2\pi ]$. We also define the ridgelet transform $\mathcal \{R\}$ on the space $\mathcal \{S\}^\prime (\mathbb \{R\}^2)$ of tempered distributions on $\mathbb \{R\}^2$, adjoint ridgelet transform $\mathcal \{R\}^\ast $ on $\mathcal \{S\}^\prime (\mathbb \{Y\})$ and establish that they are linear, continuous with respect to the weak$^\ast $-topology, consistent with $R$, $R^\ast $ respectively, and they satisfy the identity $(\mathcal \{R\}^\ast \circ \mathcal \{R\})(u) = u$, $u\in \mathcal \{S\}^\prime (\mathbb \{R\}^2)$.},
author = {Roopkumar, R.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {ridgelet transform; tempered distributions; wavelets; ridgelet transform; tempered distribution; wavelet},
language = {eng},
number = {3},
pages = {431-439},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Ridgelet transform on tempered distributions},
url = {http://eudml.org/doc/38139},
volume = {51},
year = {2010},
}

TY - JOUR
AU - Roopkumar, R.
TI - Ridgelet transform on tempered distributions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 3
SP - 431
EP - 439
AB - We prove that ridgelet transform $R:\mathcal {S}(\mathbb {R}^2)\rightarrow \mathcal {S} (\mathbb {Y})$ and adjoint ridgelet transform $R^\ast :\mathcal {S}(\mathbb {Y}) \rightarrow \mathcal {S}(\mathbb {R}^2)$ are continuous, where $\mathbb {Y}=\mathbb {R}^+\times \mathbb {R}\times [0,2\pi ]$. We also define the ridgelet transform $\mathcal {R}$ on the space $\mathcal {S}^\prime (\mathbb {R}^2)$ of tempered distributions on $\mathbb {R}^2$, adjoint ridgelet transform $\mathcal {R}^\ast $ on $\mathcal {S}^\prime (\mathbb {Y})$ and establish that they are linear, continuous with respect to the weak$^\ast $-topology, consistent with $R$, $R^\ast $ respectively, and they satisfy the identity $(\mathcal {R}^\ast \circ \mathcal {R})(u) = u$, $u\in \mathcal {S}^\prime (\mathbb {R}^2)$.
LA - eng
KW - ridgelet transform; tempered distributions; wavelets; ridgelet transform; tempered distribution; wavelet
UR - http://eudml.org/doc/38139
ER -

References

top
  1. Candès E.J., 10.1006/acha.1998.0248, Appl. Comput. Harmon. Anal. 6 (1999), 197–218. MR1676767DOI10.1006/acha.1998.0248
  2. Constantine G.M., Savits T.H., 10.1090/S0002-9947-96-01501-2, Trans. Amer. Math. Soc. 348 (1996), 503–520. Zbl0846.05003MR1325915DOI10.1090/S0002-9947-96-01501-2
  3. Deans S.R., The Radon Transform and Some of its Applications, John Wiley & Sons, New York, 1983. Zbl1121.44004MR0709591
  4. Holschneider M., Wavelets. An Analysis Tool, Clarendon Press, New York, 1995. Zbl0952.42016MR1367088
  5. Pathak R.S., 10.2748/tmj/1113246676, Tohoku Math. J. 56 (2004), 411–421. Zbl1078.42029MR2075775DOI10.2748/tmj/1113246676
  6. Roopkumar R., 10.4134/BKMS.2009.46.5.835, Bull. Korean Math. Soc. 46 (2009), 835–844. MR2554278DOI10.4134/BKMS.2009.46.5.835
  7. Rudin W., Functional Analysis, McGraw-Hill, New York, 1973. Zbl0867.46001MR0365062
  8. Starck J.L., Candès E.J., Donoho D., 10.1109/TIP.2002.1014998, IEEE Trans. Image Process. 11 (2002), 670–684. MR1929403DOI10.1109/TIP.2002.1014998

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.