Growth orders of Cesàro and Abel means of uniformly continuous operator semi-groups and cosine functions

Ryotaro Sato

Commentationes Mathematicae Universitatis Carolinae (2010)

  • Volume: 51, Issue: 3, page 441-451
  • ISSN: 0010-2628

Abstract

top
It will be proved that if N is a bounded nilpotent operator on a Banach space X of order k + 1 , where k 1 is an integer, then the γ -th order Cesàro mean C t γ : = γ t - γ 0 t ( t - s ) γ - 1 T ( s ) d s and Abel mean A λ : = λ 0 e - λ s T ( s ) d s of the uniformly continuous semigroup ( T ( t ) ) t 0 of bounded linear operators on X generated by i a I + N , where 0 a , satisfy that (a) C t γ t k - γ ( t ) for all 0 < γ k + 1 ; (b) C t γ t - 1 ( t ) for all γ k + 1 ; (c) A λ λ ( λ 0 ) . A similar result will be also proved for the uniformly continuous cosine function ( C ( t ) ) t 0 of bounded linear operators on X generated by ( i a I + N ) 2 .

How to cite

top

Sato, Ryotaro. "Growth orders of Cesàro and Abel means of uniformly continuous operator semi-groups and cosine functions." Commentationes Mathematicae Universitatis Carolinae 51.3 (2010): 441-451. <http://eudml.org/doc/38140>.

@article{Sato2010,
abstract = {It will be proved that if $N$ is a bounded nilpotent operator on a Banach space $X$ of order $k+1$, where $k\ge 1$ is an integer, then the $\gamma $-th order Cesàro mean $C_\{t\}^\{\gamma \}:=\gamma t^\{-\gamma \}\int _\{0\}^\{t\}(t-s)^\{\gamma -1\}T(s)\,ds$ and Abel mean $A_\{\lambda \}:=\lambda \int _\{0\}^\{\infty \}e^\{-\lambda s\}T(s)\,ds$ of the uniformly continuous semigroup $(T(t))_\{t\ge 0\}$ of bounded linear operators on $X$ generated by $iaI+N$, where $0\ne a\in \mathbb \{R\}$, satisfy that (a) $\Vert C_\{t\}^\{\gamma \}\Vert \sim t^\{k-\gamma \}\;(t\rightarrow \infty )$ for all $0< \gamma \le k+1$; (b) $\Vert C_\{t\}^\{\gamma \}\Vert \sim t^\{-1\}\;(t\rightarrow \infty )$ for all $\gamma \ge k+1$; (c) $\Vert A_\{\lambda \}\Vert \sim \lambda \;(\lambda \downarrow 0)$. A similar result will be also proved for the uniformly continuous cosine function $(C(t))_\{t\ge 0\}$ of bounded linear operators on $X$ generated by $(iaI+N)^\{2\}$.},
author = {Sato, Ryotaro},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Cesàro mean; Abel mean; growth order; uniformly continuous operator semi-group and cosine function; Cesàro mean; Abel mean; operator semigroup},
language = {eng},
number = {3},
pages = {441-451},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Growth orders of Cesàro and Abel means of uniformly continuous operator semi-groups and cosine functions},
url = {http://eudml.org/doc/38140},
volume = {51},
year = {2010},
}

TY - JOUR
AU - Sato, Ryotaro
TI - Growth orders of Cesàro and Abel means of uniformly continuous operator semi-groups and cosine functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 3
SP - 441
EP - 451
AB - It will be proved that if $N$ is a bounded nilpotent operator on a Banach space $X$ of order $k+1$, where $k\ge 1$ is an integer, then the $\gamma $-th order Cesàro mean $C_{t}^{\gamma }:=\gamma t^{-\gamma }\int _{0}^{t}(t-s)^{\gamma -1}T(s)\,ds$ and Abel mean $A_{\lambda }:=\lambda \int _{0}^{\infty }e^{-\lambda s}T(s)\,ds$ of the uniformly continuous semigroup $(T(t))_{t\ge 0}$ of bounded linear operators on $X$ generated by $iaI+N$, where $0\ne a\in \mathbb {R}$, satisfy that (a) $\Vert C_{t}^{\gamma }\Vert \sim t^{k-\gamma }\;(t\rightarrow \infty )$ for all $0< \gamma \le k+1$; (b) $\Vert C_{t}^{\gamma }\Vert \sim t^{-1}\;(t\rightarrow \infty )$ for all $\gamma \ge k+1$; (c) $\Vert A_{\lambda }\Vert \sim \lambda \;(\lambda \downarrow 0)$. A similar result will be also proved for the uniformly continuous cosine function $(C(t))_{t\ge 0}$ of bounded linear operators on $X$ generated by $(iaI+N)^{2}$.
LA - eng
KW - Cesàro mean; Abel mean; growth order; uniformly continuous operator semi-group and cosine function; Cesàro mean; Abel mean; operator semigroup
UR - http://eudml.org/doc/38140
ER -

References

top
  1. Chen J.-C., Sato R., Shaw S.-Y., Growth orders of Cesàro and Abel means of functions in Banach spaces, Taiwanese J. Math.(to appear). MR2674604
  2. Li Y.-C., Sato R., Shaw S.-Y., 10.4064/sm187-1-1, Studia Math. 187 (2008), 1–35. Zbl1151.47048MR2410881DOI10.4064/sm187-1-1
  3. Sato R., On ergodic averages and the range of a closed operator, Taiwanese J. Math. 10 (2006), 1193–1223. Zbl1124.47008MR2253374
  4. Sova M., Cosine operator functions,, Rozprawy Math. 49 (1966), 1–47. Zbl0156.15404MR0193525
  5. Tomilov Y., Zemànek J., 10.1017/S0305004103007436, Math. Proc. Cambridge Philos. Soc. 137 (2004), 209–225. MR2075049DOI10.1017/S0305004103007436

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.