Growth orders of Cesàro and Abel means of uniformly continuous operator semi-groups and cosine functions
Commentationes Mathematicae Universitatis Carolinae (2010)
- Volume: 51, Issue: 3, page 441-451
 - ISSN: 0010-2628
 
Access Full Article
topAbstract
topHow to cite
topSato, Ryotaro. "Growth orders of Cesàro and Abel means of uniformly continuous operator semi-groups and cosine functions." Commentationes Mathematicae Universitatis Carolinae 51.3 (2010): 441-451. <http://eudml.org/doc/38140>.
@article{Sato2010,
	abstract = {It will be proved that if $N$ is a bounded nilpotent operator on a Banach space $X$ of order $k+1$, where $k\ge 1$ is an integer, then the $\gamma $-th order Cesàro mean $C_\{t\}^\{\gamma \}:=\gamma t^\{-\gamma \}\int _\{0\}^\{t\}(t-s)^\{\gamma -1\}T(s)\,ds$ and Abel mean $A_\{\lambda \}:=\lambda \int _\{0\}^\{\infty \}e^\{-\lambda s\}T(s)\,ds$ of the uniformly continuous semigroup $(T(t))_\{t\ge 0\}$ of bounded linear operators on $X$ generated by $iaI+N$, where $0\ne a\in \mathbb \{R\}$, satisfy that (a) $\Vert C_\{t\}^\{\gamma \}\Vert \sim t^\{k-\gamma \}\;(t\rightarrow \infty )$ for all $0< \gamma \le k+1$; (b) $\Vert C_\{t\}^\{\gamma \}\Vert \sim t^\{-1\}\;(t\rightarrow \infty )$ for all $\gamma \ge k+1$; (c) $\Vert A_\{\lambda \}\Vert \sim \lambda \;(\lambda \downarrow 0)$. A similar result will be also proved for the uniformly continuous cosine function $(C(t))_\{t\ge 0\}$ of bounded linear operators on $X$ generated by $(iaI+N)^\{2\}$.},
	author = {Sato, Ryotaro},
	journal = {Commentationes Mathematicae Universitatis Carolinae},
	keywords = {Cesàro mean; Abel mean; growth order; uniformly continuous operator semi-group and cosine function; Cesàro mean; Abel mean; operator semigroup},
	language = {eng},
	number = {3},
	pages = {441-451},
	publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
	title = {Growth orders of Cesàro and Abel means of uniformly continuous operator semi-groups and cosine functions},
	url = {http://eudml.org/doc/38140},
	volume = {51},
	year = {2010},
}
TY  - JOUR
AU  - Sato, Ryotaro
TI  - Growth orders of Cesàro and Abel means of uniformly continuous operator semi-groups and cosine functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2010
PB  - Charles University in Prague, Faculty of Mathematics and Physics
VL  - 51
IS  - 3
SP  - 441
EP  - 451
AB  - It will be proved that if $N$ is a bounded nilpotent operator on a Banach space $X$ of order $k+1$, where $k\ge 1$ is an integer, then the $\gamma $-th order Cesàro mean $C_{t}^{\gamma }:=\gamma t^{-\gamma }\int _{0}^{t}(t-s)^{\gamma -1}T(s)\,ds$ and Abel mean $A_{\lambda }:=\lambda \int _{0}^{\infty }e^{-\lambda s}T(s)\,ds$ of the uniformly continuous semigroup $(T(t))_{t\ge 0}$ of bounded linear operators on $X$ generated by $iaI+N$, where $0\ne a\in \mathbb {R}$, satisfy that (a) $\Vert C_{t}^{\gamma }\Vert \sim t^{k-\gamma }\;(t\rightarrow \infty )$ for all $0< \gamma \le k+1$; (b) $\Vert C_{t}^{\gamma }\Vert \sim t^{-1}\;(t\rightarrow \infty )$ for all $\gamma \ge k+1$; (c) $\Vert A_{\lambda }\Vert \sim \lambda \;(\lambda \downarrow 0)$. A similar result will be also proved for the uniformly continuous cosine function $(C(t))_{t\ge 0}$ of bounded linear operators on $X$ generated by $(iaI+N)^{2}$.
LA  - eng
KW  - Cesàro mean; Abel mean; growth order; uniformly continuous operator semi-group and cosine function; Cesàro mean; Abel mean; operator semigroup
UR  - http://eudml.org/doc/38140
ER  - 
References
top- Chen J.-C., Sato R., Shaw S.-Y., Growth orders of Cesàro and Abel means of functions in Banach spaces, Taiwanese J. Math.(to appear). MR2674604
 - Li Y.-C., Sato R., Shaw S.-Y., 10.4064/sm187-1-1, Studia Math. 187 (2008), 1–35. Zbl1151.47048MR2410881DOI10.4064/sm187-1-1
 - Sato R., On ergodic averages and the range of a closed operator, Taiwanese J. Math. 10 (2006), 1193–1223. Zbl1124.47008MR2253374
 - Sova M., Cosine operator functions,, Rozprawy Math. 49 (1966), 1–47. Zbl0156.15404MR0193525
 - Tomilov Y., Zemànek J., 10.1017/S0305004103007436, Math. Proc. Cambridge Philos. Soc. 137 (2004), 209–225. MR2075049DOI10.1017/S0305004103007436
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.