# Solving non-holonomic Lagrangian dynamics in terms of almost product structures.

Manuel de León; David Martín de Diego

Extracta Mathematicae (1996)

- Volume: 11, Issue: 2, page 325-347
- ISSN: 0213-8743

## Access Full Article

top## Abstract

top## How to cite

topLeón, Manuel de, and Martín de Diego, David. "Solving non-holonomic Lagrangian dynamics in terms of almost product structures.." Extracta Mathematicae 11.2 (1996): 325-347. <http://eudml.org/doc/38457>.

@article{León1996,

abstract = {Given a Lagrangian system with non-holonomic constraints we construct an almost product structure on the tangent bundle of the configuration manifold such that the projection of the Euler-Lagrange vector field gives the dynamics of the system. In a degenerate case, we develop a constraint algorithm which determines a final constraint submanifold where a completely consistent dynamics of the initial system exists.},

author = {León, Manuel de, Martín de Diego, David},

journal = {Extracta Mathematicae},

keywords = {Sistemas no holonómicos; Ecuaciones de Lagrange; Espacio fibrado; Cálculo de variaciones; Sistemas dinámicos; Lagrangian system; nonholonomic constraints; almost product structure},

language = {eng},

number = {2},

pages = {325-347},

title = {Solving non-holonomic Lagrangian dynamics in terms of almost product structures.},

url = {http://eudml.org/doc/38457},

volume = {11},

year = {1996},

}

TY - JOUR

AU - León, Manuel de

AU - Martín de Diego, David

TI - Solving non-holonomic Lagrangian dynamics in terms of almost product structures.

JO - Extracta Mathematicae

PY - 1996

VL - 11

IS - 2

SP - 325

EP - 347

AB - Given a Lagrangian system with non-holonomic constraints we construct an almost product structure on the tangent bundle of the configuration manifold such that the projection of the Euler-Lagrange vector field gives the dynamics of the system. In a degenerate case, we develop a constraint algorithm which determines a final constraint submanifold where a completely consistent dynamics of the initial system exists.

LA - eng

KW - Sistemas no holonómicos; Ecuaciones de Lagrange; Espacio fibrado; Cálculo de variaciones; Sistemas dinámicos; Lagrangian system; nonholonomic constraints; almost product structure

UR - http://eudml.org/doc/38457

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.