# Maximal MV-algebras.

Alexandru Filipoiu; George Georgescu; Ada Lettieri

Mathware and Soft Computing (1997)

- Volume: 4, Issue: 1, page 53-62
- ISSN: 1134-5632

## Access Full Article

top## Abstract

top## How to cite

topFilipoiu, Alexandru, Georgescu, George, and Lettieri, Ada. "Maximal MV-algebras.." Mathware and Soft Computing 4.1 (1997): 53-62. <http://eudml.org/doc/39098>.

@article{Filipoiu1997,

abstract = {In this paper we define maximal MV-algebras, a concept similar to the maximal rings and maximal distributive lattices. We prove that any maximal MV-algebra is semilocal, then we characterize a maximal MV-algebra as finite direct product of local maximal MV-algebras.},

author = {Filipoiu, Alexandru, Georgescu, George, Lettieri, Ada},

journal = {Mathware and Soft Computing},

keywords = {Algebras; Ideal maximal; Lógica multivaluada; Grupos localmente finitos; Chinese Remainder Theorem; ideals; maximal MV-algebra; semi-local; direct product; local},

language = {eng},

number = {1},

pages = {53-62},

title = {Maximal MV-algebras.},

url = {http://eudml.org/doc/39098},

volume = {4},

year = {1997},

}

TY - JOUR

AU - Filipoiu, Alexandru

AU - Georgescu, George

AU - Lettieri, Ada

TI - Maximal MV-algebras.

JO - Mathware and Soft Computing

PY - 1997

VL - 4

IS - 1

SP - 53

EP - 62

AB - In this paper we define maximal MV-algebras, a concept similar to the maximal rings and maximal distributive lattices. We prove that any maximal MV-algebra is semilocal, then we characterize a maximal MV-algebra as finite direct product of local maximal MV-algebras.

LA - eng

KW - Algebras; Ideal maximal; Lógica multivaluada; Grupos localmente finitos; Chinese Remainder Theorem; ideals; maximal MV-algebra; semi-local; direct product; local

UR - http://eudml.org/doc/39098

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.