Maximal MV-algebras.
Alexandru Filipoiu; George Georgescu; Ada Lettieri
Mathware and Soft Computing (1997)
- Volume: 4, Issue: 1, page 53-62
- ISSN: 1134-5632
Access Full Article
topAbstract
topHow to cite
topFilipoiu, Alexandru, Georgescu, George, and Lettieri, Ada. "Maximal MV-algebras.." Mathware and Soft Computing 4.1 (1997): 53-62. <http://eudml.org/doc/39098>.
@article{Filipoiu1997,
abstract = {In this paper we define maximal MV-algebras, a concept similar to the maximal rings and maximal distributive lattices. We prove that any maximal MV-algebra is semilocal, then we characterize a maximal MV-algebra as finite direct product of local maximal MV-algebras.},
author = {Filipoiu, Alexandru, Georgescu, George, Lettieri, Ada},
journal = {Mathware and Soft Computing},
keywords = {Algebras; Ideal maximal; Lógica multivaluada; Grupos localmente finitos; Chinese Remainder Theorem; ideals; maximal MV-algebra; semi-local; direct product; local},
language = {eng},
number = {1},
pages = {53-62},
title = {Maximal MV-algebras.},
url = {http://eudml.org/doc/39098},
volume = {4},
year = {1997},
}
TY - JOUR
AU - Filipoiu, Alexandru
AU - Georgescu, George
AU - Lettieri, Ada
TI - Maximal MV-algebras.
JO - Mathware and Soft Computing
PY - 1997
VL - 4
IS - 1
SP - 53
EP - 62
AB - In this paper we define maximal MV-algebras, a concept similar to the maximal rings and maximal distributive lattices. We prove that any maximal MV-algebra is semilocal, then we characterize a maximal MV-algebra as finite direct product of local maximal MV-algebras.
LA - eng
KW - Algebras; Ideal maximal; Lógica multivaluada; Grupos localmente finitos; Chinese Remainder Theorem; ideals; maximal MV-algebra; semi-local; direct product; local
UR - http://eudml.org/doc/39098
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.