Hardy spaces and the Dirichlet problem on Lipschitz domains.

Carlos E. Kenig; Jill Pipher

Revista Matemática Iberoamericana (1987)

  • Volume: 3, Issue: 2, page 191-247
  • ISSN: 0213-2230

Abstract

top
Our concern in this paper is to describe a class of Hardy spaces Hp(D) for 1 ≤ p < 2 on a Lipschitz domain D ⊂ Rn when n ≥ 3, and a certain smooth counterpart of Hp(D) on Rn-1, by providing an atomic decomposition and a description of their duals.

How to cite

top

Kenig, Carlos E., and Pipher, Jill. "Hardy spaces and the Dirichlet problem on Lipschitz domains.." Revista Matemática Iberoamericana 3.2 (1987): 191-247. <http://eudml.org/doc/39345>.

@article{Kenig1987,
abstract = {Our concern in this paper is to describe a class of Hardy spaces Hp(D) for 1 ≤ p &lt; 2 on a Lipschitz domain D ⊂ Rn when n ≥ 3, and a certain smooth counterpart of Hp(D) on Rn-1, by providing an atomic decomposition and a description of their duals.},
author = {Kenig, Carlos E., Pipher, Jill},
journal = {Revista Matemática Iberoamericana},
keywords = {Espacios de Hardy; Desintegración atómica; Dualidad; Lipschitz domain; Hardy space; surface measure; non-tangential maximal function; atomic decomposition; BMO-functions; harmonic measure},
language = {eng},
number = {2},
pages = {191-247},
title = {Hardy spaces and the Dirichlet problem on Lipschitz domains.},
url = {http://eudml.org/doc/39345},
volume = {3},
year = {1987},
}

TY - JOUR
AU - Kenig, Carlos E.
AU - Pipher, Jill
TI - Hardy spaces and the Dirichlet problem on Lipschitz domains.
JO - Revista Matemática Iberoamericana
PY - 1987
VL - 3
IS - 2
SP - 191
EP - 247
AB - Our concern in this paper is to describe a class of Hardy spaces Hp(D) for 1 ≤ p &lt; 2 on a Lipschitz domain D ⊂ Rn when n ≥ 3, and a certain smooth counterpart of Hp(D) on Rn-1, by providing an atomic decomposition and a description of their duals.
LA - eng
KW - Espacios de Hardy; Desintegración atómica; Dualidad; Lipschitz domain; Hardy space; surface measure; non-tangential maximal function; atomic decomposition; BMO-functions; harmonic measure
UR - http://eudml.org/doc/39345
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.