Hardy spaces and the Dirichlet problem on Lipschitz domains.
Revista Matemática Iberoamericana (1987)
- Volume: 3, Issue: 2, page 191-247
- ISSN: 0213-2230
Access Full Article
topAbstract
topHow to cite
topKenig, Carlos E., and Pipher, Jill. "Hardy spaces and the Dirichlet problem on Lipschitz domains.." Revista Matemática Iberoamericana 3.2 (1987): 191-247. <http://eudml.org/doc/39345>.
@article{Kenig1987,
abstract = {Our concern in this paper is to describe a class of Hardy spaces Hp(D) for 1 ≤ p < 2 on a Lipschitz domain D ⊂ Rn when n ≥ 3, and a certain smooth counterpart of Hp(D) on Rn-1, by providing an atomic decomposition and a description of their duals.},
author = {Kenig, Carlos E., Pipher, Jill},
journal = {Revista Matemática Iberoamericana},
keywords = {Espacios de Hardy; Desintegración atómica; Dualidad; Lipschitz domain; Hardy space; surface measure; non-tangential maximal function; atomic decomposition; BMO-functions; harmonic measure},
language = {eng},
number = {2},
pages = {191-247},
title = {Hardy spaces and the Dirichlet problem on Lipschitz domains.},
url = {http://eudml.org/doc/39345},
volume = {3},
year = {1987},
}
TY - JOUR
AU - Kenig, Carlos E.
AU - Pipher, Jill
TI - Hardy spaces and the Dirichlet problem on Lipschitz domains.
JO - Revista Matemática Iberoamericana
PY - 1987
VL - 3
IS - 2
SP - 191
EP - 247
AB - Our concern in this paper is to describe a class of Hardy spaces Hp(D) for 1 ≤ p < 2 on a Lipschitz domain D ⊂ Rn when n ≥ 3, and a certain smooth counterpart of Hp(D) on Rn-1, by providing an atomic decomposition and a description of their duals.
LA - eng
KW - Espacios de Hardy; Desintegración atómica; Dualidad; Lipschitz domain; Hardy space; surface measure; non-tangential maximal function; atomic decomposition; BMO-functions; harmonic measure
UR - http://eudml.org/doc/39345
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.