top
A fundamental question about hypersurfaces in the Euclidean space is to decide if the sphere is the only compact hypersurface (embedded or immersed) with constant higher order mean curvature Hr, for some r = 1, ..., n.
Ros Mulero, Antonio. "Compact hypersurfaces with constant higher order mean curvatures.." Revista Matemática Iberoamericana 3.3-4 (1987): 447-453. <http://eudml.org/doc/39364>.
@article{RosMulero1987, abstract = {A fundamental question about hypersurfaces in the Euclidean space is to decide if the sphere is the only compact hypersurface (embedded or immersed) with constant higher order mean curvature Hr, for some r = 1, ..., n.}, author = {Ros Mulero, Antonio}, journal = {Revista Matemática Iberoamericana}, keywords = {Espacio euclídeo; Hipersuperficies compactas; Curvatura; Esferas; Teoremas; higher order mean curvature; sphere; compact hypersurface}, language = {eng}, number = {3-4}, pages = {447-453}, title = {Compact hypersurfaces with constant higher order mean curvatures.}, url = {http://eudml.org/doc/39364}, volume = {3}, year = {1987}, }
TY - JOUR AU - Ros Mulero, Antonio TI - Compact hypersurfaces with constant higher order mean curvatures. JO - Revista Matemática Iberoamericana PY - 1987 VL - 3 IS - 3-4 SP - 447 EP - 453 AB - A fundamental question about hypersurfaces in the Euclidean space is to decide if the sphere is the only compact hypersurface (embedded or immersed) with constant higher order mean curvature Hr, for some r = 1, ..., n. LA - eng KW - Espacio euclídeo; Hipersuperficies compactas; Curvatura; Esferas; Teoremas; higher order mean curvature; sphere; compact hypersurface UR - http://eudml.org/doc/39364 ER -