Diffusive limit for finite velocity Boltzmann kinetic models.
Pierre Louis Lions; Giuseppe Toscani
Revista Matemática Iberoamericana (1997)
- Volume: 13, Issue: 3, page 473-513
- ISSN: 0213-2230
Access Full Article
topAbstract
topHow to cite
topLions, Pierre Louis, and Toscani, Giuseppe. "Diffusive limit for finite velocity Boltzmann kinetic models.." Revista Matemática Iberoamericana 13.3 (1997): 473-513. <http://eudml.org/doc/39532>.
@article{Lions1997,
abstract = {We investigate, in the diffusive scaling, the limit to the macroscopic description of finite-velocity Boltzmann kinetic models, where the rate coefficient in front of the collision operator is assumed to be dependent of the mass density. It is shown that in the limit the flux vanishes, while the evolution of the mass density is governed by a nonlinear parabolic equation of porous medium type. In the last part of the paper we show that our method adapts to prove the so-called Rosseland approximation in radiative transfer theory.},
author = {Lions, Pierre Louis, Toscani, Giuseppe},
journal = {Revista Matemática Iberoamericana},
keywords = {Dinámica de fluidos; Ecuaciones diferenciales en derivadas parciales; Modelos cinéticos; Límite superior; Gases; Proceso de difusión; Finitud; Estudio matemático; Boltzmann models; diffusive limit; macroscopic description; a priori estimate; flux; radiative transfer},
language = {eng},
number = {3},
pages = {473-513},
title = {Diffusive limit for finite velocity Boltzmann kinetic models.},
url = {http://eudml.org/doc/39532},
volume = {13},
year = {1997},
}
TY - JOUR
AU - Lions, Pierre Louis
AU - Toscani, Giuseppe
TI - Diffusive limit for finite velocity Boltzmann kinetic models.
JO - Revista Matemática Iberoamericana
PY - 1997
VL - 13
IS - 3
SP - 473
EP - 513
AB - We investigate, in the diffusive scaling, the limit to the macroscopic description of finite-velocity Boltzmann kinetic models, where the rate coefficient in front of the collision operator is assumed to be dependent of the mass density. It is shown that in the limit the flux vanishes, while the evolution of the mass density is governed by a nonlinear parabolic equation of porous medium type. In the last part of the paper we show that our method adapts to prove the so-called Rosseland approximation in radiative transfer theory.
LA - eng
KW - Dinámica de fluidos; Ecuaciones diferenciales en derivadas parciales; Modelos cinéticos; Límite superior; Gases; Proceso de difusión; Finitud; Estudio matemático; Boltzmann models; diffusive limit; macroscopic description; a priori estimate; flux; radiative transfer
UR - http://eudml.org/doc/39532
ER -
Citations in EuDML Documents
top- Rita Cavazzoni, Metodi cinetici nello studio qualitativo di problemi di evoluzione nonlineari con convezione e diffusione
- Thierry Goudon, Antoine Mellet, Homogenization and diffusion asymptotics of the linear Boltzmann equation
- Thierry Goudon, Antoine Mellet, Homogenization and Diffusion Asymptotics of the Linear Boltzmann Equation
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.