# The angular distribution of mass by Bergman functions.

Donald E. Marshall; Wayne Smith

Revista Matemática Iberoamericana (1999)

- Volume: 15, Issue: 1, page 93-116
- ISSN: 0213-2230

## Access Full Article

top## Abstract

top## How to cite

topMarshall, Donald E., and Smith, Wayne. "The angular distribution of mass by Bergman functions.." Revista Matemática Iberoamericana 15.1 (1999): 93-116. <http://eudml.org/doc/39565>.

@article{Marshall1999,

abstract = {Let D = \{z: |z| < 1\} be the unit disk in the complex plane and denote by dA two-dimensional Lebesgue measure on D. For ε > 0 we define Σε = \{z: |arg z| < ε\}. We prove that for every ε > 0 there exists a δ > 0 such that if f is analytic, univalent and area-integrable on D, and f(0) = 0 thenThis problem arose in connection with a characterization by Hamilton, Reich and Strebel of extremal dilatation for quasiconformal homeomorphisms of D.},

author = {Marshall, Donald E., Smith, Wayne},

journal = {Revista Matemática Iberoamericana},

keywords = {Funciones analíticas; Medidas de Borel; Estimación; Distribución de valores extremos; Bergman functions; quasiconformal mappings},

language = {eng},

number = {1},

pages = {93-116},

title = {The angular distribution of mass by Bergman functions.},

url = {http://eudml.org/doc/39565},

volume = {15},

year = {1999},

}

TY - JOUR

AU - Marshall, Donald E.

AU - Smith, Wayne

TI - The angular distribution of mass by Bergman functions.

JO - Revista Matemática Iberoamericana

PY - 1999

VL - 15

IS - 1

SP - 93

EP - 116

AB - Let D = {z: |z| < 1} be the unit disk in the complex plane and denote by dA two-dimensional Lebesgue measure on D. For ε > 0 we define Σε = {z: |arg z| < ε}. We prove that for every ε > 0 there exists a δ > 0 such that if f is analytic, univalent and area-integrable on D, and f(0) = 0 thenThis problem arose in connection with a characterization by Hamilton, Reich and Strebel of extremal dilatation for quasiconformal homeomorphisms of D.

LA - eng

KW - Funciones analíticas; Medidas de Borel; Estimación; Distribución de valores extremos; Bergman functions; quasiconformal mappings

UR - http://eudml.org/doc/39565

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.