The angular distribution of mass by Bergman functions.
Donald E. Marshall; Wayne Smith
Revista Matemática Iberoamericana (1999)
- Volume: 15, Issue: 1, page 93-116
- ISSN: 0213-2230
Access Full Article
topAbstract
topHow to cite
topMarshall, Donald E., and Smith, Wayne. "The angular distribution of mass by Bergman functions.." Revista Matemática Iberoamericana 15.1 (1999): 93-116. <http://eudml.org/doc/39565>.
@article{Marshall1999,
abstract = {Let D = \{z: |z| < 1\} be the unit disk in the complex plane and denote by dA two-dimensional Lebesgue measure on D. For ε > 0 we define Σε = \{z: |arg z| < ε\}. We prove that for every ε > 0 there exists a δ > 0 such that if f is analytic, univalent and area-integrable on D, and f(0) = 0 thenThis problem arose in connection with a characterization by Hamilton, Reich and Strebel of extremal dilatation for quasiconformal homeomorphisms of D.},
author = {Marshall, Donald E., Smith, Wayne},
journal = {Revista Matemática Iberoamericana},
keywords = {Funciones analíticas; Medidas de Borel; Estimación; Distribución de valores extremos; Bergman functions; quasiconformal mappings},
language = {eng},
number = {1},
pages = {93-116},
title = {The angular distribution of mass by Bergman functions.},
url = {http://eudml.org/doc/39565},
volume = {15},
year = {1999},
}
TY - JOUR
AU - Marshall, Donald E.
AU - Smith, Wayne
TI - The angular distribution of mass by Bergman functions.
JO - Revista Matemática Iberoamericana
PY - 1999
VL - 15
IS - 1
SP - 93
EP - 116
AB - Let D = {z: |z| < 1} be the unit disk in the complex plane and denote by dA two-dimensional Lebesgue measure on D. For ε > 0 we define Σε = {z: |arg z| < ε}. We prove that for every ε > 0 there exists a δ > 0 such that if f is analytic, univalent and area-integrable on D, and f(0) = 0 thenThis problem arose in connection with a characterization by Hamilton, Reich and Strebel of extremal dilatation for quasiconformal homeomorphisms of D.
LA - eng
KW - Funciones analíticas; Medidas de Borel; Estimación; Distribución de valores extremos; Bergman functions; quasiconformal mappings
UR - http://eudml.org/doc/39565
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.