top
We prove that k (k ≥ 9) non-conjugate symmetries of a Riemann surface of genus g have at most 2g - 2 + 2r - 3(9 - k) ovals in total, where r is the smallest positive integer for which k ≤ 2r - 1. Furthermore we prove that for arbitrary k ≥ 9 this bound is sharp for infinitely many values of g.
Gromadzki, Grzegorz. "On ovals on Riemann surfaces.." Revista Matemática Iberoamericana 16.3 (2000): 515-527. <http://eudml.org/doc/39615>.
@article{Gromadzki2000, abstract = {We prove that k (k ≥ 9) non-conjugate symmetries of a Riemann surface of genus g have at most 2g - 2 + 2r - 3(9 - k) ovals in total, where r is the smallest positive integer for which k ≤ 2r - 1. Furthermore we prove that for arbitrary k ≥ 9 this bound is sharp for infinitely many values of g.}, author = {Gromadzki, Grzegorz}, journal = {Revista Matemática Iberoamericana}, keywords = {Simetría; Superficies Riemann; Grupos de automorfismos}, language = {eng}, number = {3}, pages = {515-527}, title = {On ovals on Riemann surfaces.}, url = {http://eudml.org/doc/39615}, volume = {16}, year = {2000}, }
TY - JOUR AU - Gromadzki, Grzegorz TI - On ovals on Riemann surfaces. JO - Revista Matemática Iberoamericana PY - 2000 VL - 16 IS - 3 SP - 515 EP - 527 AB - We prove that k (k ≥ 9) non-conjugate symmetries of a Riemann surface of genus g have at most 2g - 2 + 2r - 3(9 - k) ovals in total, where r is the smallest positive integer for which k ≤ 2r - 1. Furthermore we prove that for arbitrary k ≥ 9 this bound is sharp for infinitely many values of g. LA - eng KW - Simetría; Superficies Riemann; Grupos de automorfismos UR - http://eudml.org/doc/39615 ER -