# On ovals on Riemann surfaces.

Revista Matemática Iberoamericana (2000)

- Volume: 16, Issue: 3, page 515-527
- ISSN: 0213-2230

## Access Full Article

top## Abstract

top## How to cite

topGromadzki, Grzegorz. "On ovals on Riemann surfaces.." Revista Matemática Iberoamericana 16.3 (2000): 515-527. <http://eudml.org/doc/39615>.

@article{Gromadzki2000,

abstract = {We prove that k (k ≥ 9) non-conjugate symmetries of a Riemann surface of genus g have at most 2g - 2 + 2r - 3(9 - k) ovals in total, where r is the smallest positive integer for which k ≤ 2r - 1. Furthermore we prove that for arbitrary k ≥ 9 this bound is sharp for infinitely many values of g.},

author = {Gromadzki, Grzegorz},

journal = {Revista Matemática Iberoamericana},

keywords = {Simetría; Superficies Riemann; Grupos de automorfismos},

language = {eng},

number = {3},

pages = {515-527},

title = {On ovals on Riemann surfaces.},

url = {http://eudml.org/doc/39615},

volume = {16},

year = {2000},

}

TY - JOUR

AU - Gromadzki, Grzegorz

TI - On ovals on Riemann surfaces.

JO - Revista Matemática Iberoamericana

PY - 2000

VL - 16

IS - 3

SP - 515

EP - 527

AB - We prove that k (k ≥ 9) non-conjugate symmetries of a Riemann surface of genus g have at most 2g - 2 + 2r - 3(9 - k) ovals in total, where r is the smallest positive integer for which k ≤ 2r - 1. Furthermore we prove that for arbitrary k ≥ 9 this bound is sharp for infinitely many values of g.

LA - eng

KW - Simetría; Superficies Riemann; Grupos de automorfismos

UR - http://eudml.org/doc/39615

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.