On ovals on Riemann surfaces.

Grzegorz Gromadzki

Revista Matemática Iberoamericana (2000)

  • Volume: 16, Issue: 3, page 515-527
  • ISSN: 0213-2230

Abstract

top
We prove that k (k ≥ 9) non-conjugate symmetries of a Riemann surface of genus g have at most 2g - 2 + 2r - 3(9 - k) ovals in total, where r is the smallest positive integer for which k ≤ 2r - 1. Furthermore we prove that for arbitrary k ≥ 9 this bound is sharp for infinitely many values of g.

How to cite

top

Gromadzki, Grzegorz. "On ovals on Riemann surfaces.." Revista Matemática Iberoamericana 16.3 (2000): 515-527. <http://eudml.org/doc/39615>.

@article{Gromadzki2000,
abstract = {We prove that k (k ≥ 9) non-conjugate symmetries of a Riemann surface of genus g have at most 2g - 2 + 2r - 3(9 - k) ovals in total, where r is the smallest positive integer for which k ≤ 2r - 1. Furthermore we prove that for arbitrary k ≥ 9 this bound is sharp for infinitely many values of g.},
author = {Gromadzki, Grzegorz},
journal = {Revista Matemática Iberoamericana},
keywords = {Simetría; Superficies Riemann; Grupos de automorfismos},
language = {eng},
number = {3},
pages = {515-527},
title = {On ovals on Riemann surfaces.},
url = {http://eudml.org/doc/39615},
volume = {16},
year = {2000},
}

TY - JOUR
AU - Gromadzki, Grzegorz
TI - On ovals on Riemann surfaces.
JO - Revista Matemática Iberoamericana
PY - 2000
VL - 16
IS - 3
SP - 515
EP - 527
AB - We prove that k (k ≥ 9) non-conjugate symmetries of a Riemann surface of genus g have at most 2g - 2 + 2r - 3(9 - k) ovals in total, where r is the smallest positive integer for which k ≤ 2r - 1. Furthermore we prove that for arbitrary k ≥ 9 this bound is sharp for infinitely many values of g.
LA - eng
KW - Simetría; Superficies Riemann; Grupos de automorfismos
UR - http://eudml.org/doc/39615
ER -

NotesEmbed ?

top

You must be logged in to post comments.