Branching process associated with 2d-Navier Stokes equation.
Saïd Benachour; Bernard Roynette; Pierre Vallois
Revista Matemática Iberoamericana (2001)
- Volume: 17, Issue: 2, page 331-373
- ISSN: 0213-2230
Access Full Article
topAbstract
topHow to cite
topBenachour, Saïd, Roynette, Bernard, and Vallois, Pierre. "Branching process associated with 2d-Navier Stokes equation.." Revista Matemática Iberoamericana 17.2 (2001): 331-373. <http://eudml.org/doc/39680>.
@article{Benachour2001,
abstract = {Ω being a bounded open set in R∙, with regular boundary, we associate with Navier-Stokes equation in Ω where the velocity is null on ∂Ω, a non-linear branching process (Yt, t ≥ 0). More precisely: Eω0(〈h,Yt〉) = 〈ω,h〉, for any test function h, where ω = rot u, u denotes the velocity solution of Navier-Stokes equation. The support of the random measure Yt increases or decreases in one unit when the underlying process hits ∂Ω; this stochastic phenomenon corresponds to the creation-annihilation of vortex localized at the boundary of Ω.},
author = {Benachour, Saïd, Roynette, Bernard, Vallois, Pierre},
journal = {Revista Matemática Iberoamericana},
keywords = {Ecuaciones de Navier-Stokes; Proceso de ramificación; Proceso de difusión; Ecuaciones diferenciales estocásticas; Vorticidad; branching process; 2D Navier-Stokes equations; stochastic model; diffusion processes},
language = {eng},
number = {2},
pages = {331-373},
title = {Branching process associated with 2d-Navier Stokes equation.},
url = {http://eudml.org/doc/39680},
volume = {17},
year = {2001},
}
TY - JOUR
AU - Benachour, Saïd
AU - Roynette, Bernard
AU - Vallois, Pierre
TI - Branching process associated with 2d-Navier Stokes equation.
JO - Revista Matemática Iberoamericana
PY - 2001
VL - 17
IS - 2
SP - 331
EP - 373
AB - Ω being a bounded open set in R∙, with regular boundary, we associate with Navier-Stokes equation in Ω where the velocity is null on ∂Ω, a non-linear branching process (Yt, t ≥ 0). More precisely: Eω0(〈h,Yt〉) = 〈ω,h〉, for any test function h, where ω = rot u, u denotes the velocity solution of Navier-Stokes equation. The support of the random measure Yt increases or decreases in one unit when the underlying process hits ∂Ω; this stochastic phenomenon corresponds to the creation-annihilation of vortex localized at the boundary of Ω.
LA - eng
KW - Ecuaciones de Navier-Stokes; Proceso de ramificación; Proceso de difusión; Ecuaciones diferenciales estocásticas; Vorticidad; branching process; 2D Navier-Stokes equations; stochastic model; diffusion processes
UR - http://eudml.org/doc/39680
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.