Polynomial growth harmonic functions on complete Riemannian manifolds.
Revista Matemática Iberoamericana (2004)
- Volume: 20, Issue: 2, page 315-332
- ISSN: 0213-2230
Access Full Article
topAbstract
topHow to cite
topLee, Yong Hah. "Polynomial growth harmonic functions on complete Riemannian manifolds.." Revista Matemática Iberoamericana 20.2 (2004): 315-332. <http://eudml.org/doc/39721>.
@article{Lee2004,
abstract = {In this paper, we give a sharp estimate on the dimension of the space of polynomial growth harmonic functions with fixed degree on a complete Riemannian manifold, under various assumptions.},
author = {Lee, Yong Hah},
journal = {Revista Matemática Iberoamericana},
keywords = {Variedad riemanniana; Función armónica; harmonic functions; nonnegative Ricci curvature; mean value inequality; Poincaré inequality; rough isometries},
language = {eng},
number = {2},
pages = {315-332},
title = {Polynomial growth harmonic functions on complete Riemannian manifolds.},
url = {http://eudml.org/doc/39721},
volume = {20},
year = {2004},
}
TY - JOUR
AU - Lee, Yong Hah
TI - Polynomial growth harmonic functions on complete Riemannian manifolds.
JO - Revista Matemática Iberoamericana
PY - 2004
VL - 20
IS - 2
SP - 315
EP - 332
AB - In this paper, we give a sharp estimate on the dimension of the space of polynomial growth harmonic functions with fixed degree on a complete Riemannian manifold, under various assumptions.
LA - eng
KW - Variedad riemanniana; Función armónica; harmonic functions; nonnegative Ricci curvature; mean value inequality; Poincaré inequality; rough isometries
UR - http://eudml.org/doc/39721
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.