Meromorphic functions of the form f(z) = Σn=1∞ an/(z - zn).

James Langley; John Rossi

Revista Matemática Iberoamericana (2004)

  • Volume: 20, Issue: 1, page 285-314
  • ISSN: 0213-2230

Abstract

top
We prove some results on the zeros of functions of the form f(z) = Σn=1∞ an/(z - zn), using quasiconformal surgery, Fourier series methods, and Baernstein's spread theorem. Our results have applications to fixpoints of entire functions.

How to cite

top

Langley, James, and Rossi, John. "Meromorphic functions of the form f(z) = Σn=1∞ an/(z - zn).." Revista Matemática Iberoamericana 20.1 (2004): 285-314. <http://eudml.org/doc/39734>.

@article{Langley2004,
abstract = {We prove some results on the zeros of functions of the form f(z) = Σn=1∞ an/(z - zn), using quasiconformal surgery, Fourier series methods, and Baernstein's spread theorem. Our results have applications to fixpoints of entire functions.},
author = {Langley, James, Rossi, John},
journal = {Revista Matemática Iberoamericana},
keywords = {Funciones de variable compleja; Función meromorfa; Función entera; Ceros de una función},
language = {eng},
number = {1},
pages = {285-314},
title = {Meromorphic functions of the form f(z) = Σn=1∞ an/(z - zn).},
url = {http://eudml.org/doc/39734},
volume = {20},
year = {2004},
}

TY - JOUR
AU - Langley, James
AU - Rossi, John
TI - Meromorphic functions of the form f(z) = Σn=1∞ an/(z - zn).
JO - Revista Matemática Iberoamericana
PY - 2004
VL - 20
IS - 1
SP - 285
EP - 314
AB - We prove some results on the zeros of functions of the form f(z) = Σn=1∞ an/(z - zn), using quasiconformal surgery, Fourier series methods, and Baernstein's spread theorem. Our results have applications to fixpoints of entire functions.
LA - eng
KW - Funciones de variable compleja; Función meromorfa; Función entera; Ceros de una función
UR - http://eudml.org/doc/39734
ER -

NotesEmbed ?

top

You must be logged in to post comments.