On Banach spaces which are M-ideals in their biduals.

Juan Carlos Cabello Piñar

Extracta Mathematicae (1990)

  • Volume: 5, Issue: 2, page 74-76
  • ISSN: 0213-8743

Abstract

top
A Banach space X is an M-ideal in its bidual if the relation ||f + w|| = ||f|| + ||w||holds for every f in X* and every w in X ⊥.The class of the Banach spaces which are M-ideals in their biduals, in short, the class of M-embedded spaces, has been carefully investigated, in particular by A. Lima, G. Godefroy and the West Berlin School. The spaces c0(I) -I any set- equipped with their canonical norm belong to this class, which also contains e.g. certain spaces K(E,F) of compact operators between reflexive spaces (see [7]). This class has very nice properties; for instance, these are Weakly Compactly Generated (W.C.G.) Asplund spaces [2; Th. 3], have the property (v) [5; Th. 1] and (u) [4; Main Th.] of Pelczynski and satisfy, among other isometric properties, that every isometric isomorphism of X** is the bitranspose of an isometric isomorphism of X [6; Prop. 4.2]. The purpose of this work is to show that these properties are also true in a wider class of Banach spaces.

How to cite

top

Cabello Piñar, Juan Carlos. "On Banach spaces which are M-ideals in their biduals.." Extracta Mathematicae 5.2 (1990): 74-76. <http://eudml.org/doc/39875>.

@article{CabelloPiñar1990,
abstract = {A Banach space X is an M-ideal in its bidual if the relation ||f + w|| = ||f|| + ||w||holds for every f in X* and every w in X ⊥.The class of the Banach spaces which are M-ideals in their biduals, in short, the class of M-embedded spaces, has been carefully investigated, in particular by A. Lima, G. Godefroy and the West Berlin School. The spaces c0(I) -I any set- equipped with their canonical norm belong to this class, which also contains e.g. certain spaces K(E,F) of compact operators between reflexive spaces (see [7]). This class has very nice properties; for instance, these are Weakly Compactly Generated (W.C.G.) Asplund spaces [2; Th. 3], have the property (v) [5; Th. 1] and (u) [4; Main Th.] of Pelczynski and satisfy, among other isometric properties, that every isometric isomorphism of X** is the bitranspose of an isometric isomorphism of X [6; Prop. 4.2]. The purpose of this work is to show that these properties are also true in a wider class of Banach spaces.},
author = {Cabello Piñar, Juan Carlos},
journal = {Extracta Mathematicae},
keywords = {Espacios de Banach; Ideales; Espacio bidual; Operadores compactos},
language = {eng},
number = {2},
pages = {74-76},
title = {On Banach spaces which are M-ideals in their biduals.},
url = {http://eudml.org/doc/39875},
volume = {5},
year = {1990},
}

TY - JOUR
AU - Cabello Piñar, Juan Carlos
TI - On Banach spaces which are M-ideals in their biduals.
JO - Extracta Mathematicae
PY - 1990
VL - 5
IS - 2
SP - 74
EP - 76
AB - A Banach space X is an M-ideal in its bidual if the relation ||f + w|| = ||f|| + ||w||holds for every f in X* and every w in X ⊥.The class of the Banach spaces which are M-ideals in their biduals, in short, the class of M-embedded spaces, has been carefully investigated, in particular by A. Lima, G. Godefroy and the West Berlin School. The spaces c0(I) -I any set- equipped with their canonical norm belong to this class, which also contains e.g. certain spaces K(E,F) of compact operators between reflexive spaces (see [7]). This class has very nice properties; for instance, these are Weakly Compactly Generated (W.C.G.) Asplund spaces [2; Th. 3], have the property (v) [5; Th. 1] and (u) [4; Main Th.] of Pelczynski and satisfy, among other isometric properties, that every isometric isomorphism of X** is the bitranspose of an isometric isomorphism of X [6; Prop. 4.2]. The purpose of this work is to show that these properties are also true in a wider class of Banach spaces.
LA - eng
KW - Espacios de Banach; Ideales; Espacio bidual; Operadores compactos
UR - http://eudml.org/doc/39875
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.