Absolutely (∞,p) summing and weakly-p-compact operators in Banach spaces.
Extracta Mathematicae (1990)
- Volume: 5, Issue: 3, page 153-155
- ISSN: 0213-8743
Access Full Article
topAbstract
topHow to cite
topFernández Castillo, Jesús M.. "Absolutely (∞,p) summing and weakly-p-compact operators in Banach spaces.." Extracta Mathematicae 5.3 (1990): 153-155. <http://eudml.org/doc/39899>.
@article{FernándezCastillo1990,
abstract = {A sequence (xn) in a Banach space X is said to be weakly-p-summable, 1 ≤ p < ∞, when for each x* ∈ X*, (x*xn) ∈ lp. We shall say that a sequence (xn) is weakly-p-convergent if for some x ∈ X, (xn - x) is weakly-p-summable.},
author = {Fernández Castillo, Jesús M.},
journal = {Extracta Mathematicae},
keywords = {Espacios normados; Espacios de Banach; Operadores lineales; Operador absolutamente sumante; Operador débilmente compacto; absolutely summing and weakly--compact operators in Banach spaces},
language = {eng},
number = {3},
pages = {153-155},
title = {Absolutely (∞,p) summing and weakly-p-compact operators in Banach spaces.},
url = {http://eudml.org/doc/39899},
volume = {5},
year = {1990},
}
TY - JOUR
AU - Fernández Castillo, Jesús M.
TI - Absolutely (∞,p) summing and weakly-p-compact operators in Banach spaces.
JO - Extracta Mathematicae
PY - 1990
VL - 5
IS - 3
SP - 153
EP - 155
AB - A sequence (xn) in a Banach space X is said to be weakly-p-summable, 1 ≤ p < ∞, when for each x* ∈ X*, (x*xn) ∈ lp. We shall say that a sequence (xn) is weakly-p-convergent if for some x ∈ X, (xn - x) is weakly-p-summable.
LA - eng
KW - Espacios normados; Espacios de Banach; Operadores lineales; Operador absolutamente sumante; Operador débilmente compacto; absolutely summing and weakly--compact operators in Banach spaces
UR - http://eudml.org/doc/39899
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.