# Absolutely (∞,p) summing and weakly-p-compact operators in Banach spaces.

Extracta Mathematicae (1990)

- Volume: 5, Issue: 3, page 153-155
- ISSN: 0213-8743

## Access Full Article

top## Abstract

top## How to cite

topFernández Castillo, Jesús M.. "Absolutely (∞,p) summing and weakly-p-compact operators in Banach spaces.." Extracta Mathematicae 5.3 (1990): 153-155. <http://eudml.org/doc/39899>.

@article{FernándezCastillo1990,

abstract = {A sequence (xn) in a Banach space X is said to be weakly-p-summable, 1 ≤ p < ∞, when for each x* ∈ X*, (x*xn) ∈ lp. We shall say that a sequence (xn) is weakly-p-convergent if for some x ∈ X, (xn - x) is weakly-p-summable.},

author = {Fernández Castillo, Jesús M.},

journal = {Extracta Mathematicae},

keywords = {Espacios normados; Espacios de Banach; Operadores lineales; Operador absolutamente sumante; Operador débilmente compacto; absolutely summing and weakly--compact operators in Banach spaces},

language = {eng},

number = {3},

pages = {153-155},

title = {Absolutely (∞,p) summing and weakly-p-compact operators in Banach spaces.},

url = {http://eudml.org/doc/39899},

volume = {5},

year = {1990},

}

TY - JOUR

AU - Fernández Castillo, Jesús M.

TI - Absolutely (∞,p) summing and weakly-p-compact operators in Banach spaces.

JO - Extracta Mathematicae

PY - 1990

VL - 5

IS - 3

SP - 153

EP - 155

AB - A sequence (xn) in a Banach space X is said to be weakly-p-summable, 1 ≤ p < ∞, when for each x* ∈ X*, (x*xn) ∈ lp. We shall say that a sequence (xn) is weakly-p-convergent if for some x ∈ X, (xn - x) is weakly-p-summable.

LA - eng

KW - Espacios normados; Espacios de Banach; Operadores lineales; Operador absolutamente sumante; Operador débilmente compacto; absolutely summing and weakly--compact operators in Banach spaces

UR - http://eudml.org/doc/39899

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.