On the duality between the theorem of Gauss-Bonnet and the integral of geodesics which intersect a curve on a surface.

E. Vidal Abascal

Collectanea Mathematica (1980)

  • Volume: 31, Issue: 2, page 113-123
  • ISSN: 0010-0757

How to cite

top

Vidal Abascal, E.. "Sobre la dualidad entre el teorema de Gauss-Bonnet y la integral de geodésicas que cortan a una curva sobre una superficie.." Collectanea Mathematica 31.2 (1980): 113-123. <http://eudml.org/doc/40595>.

@article{VidalAbascal1980,
author = {Vidal Abascal, E.},
journal = {Collectanea Mathematica},
keywords = {Geodésicas; Teorema de Gauss-Bonnet; Integral de geodésicas; closed curve on a surface; arc length; geodesics; Gauss-Bonnet formula},
language = {spa},
number = {2},
pages = {113-123},
title = {Sobre la dualidad entre el teorema de Gauss-Bonnet y la integral de geodésicas que cortan a una curva sobre una superficie.},
url = {http://eudml.org/doc/40595},
volume = {31},
year = {1980},
}

TY - JOUR
AU - Vidal Abascal, E.
TI - Sobre la dualidad entre el teorema de Gauss-Bonnet y la integral de geodésicas que cortan a una curva sobre una superficie.
JO - Collectanea Mathematica
PY - 1980
VL - 31
IS - 2
SP - 113
EP - 123
LA - spa
KW - Geodésicas; Teorema de Gauss-Bonnet; Integral de geodésicas; closed curve on a surface; arc length; geodesics; Gauss-Bonnet formula
UR - http://eudml.org/doc/40595
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.