Conditional expectation for finitely additive probabilities.

Luis A. Sarabia

Trabajos de Estadística e Investigación Operativa (1982)

  • Volume: 33, Issue: 1, page 64-85
  • ISSN: 0041-0241

Abstract

top
Let (Ω, θ, J) be a finitely additive probabilistic space formed by any set Ω, an algebra of subsets θ and a finitely additive probability J. In these conditions, if F belongs to V1(Ω, θ, J) there exists f, element of the completion of L1(Ω, θ, J), such that F(E) = ∫E f dJ for all E of θ and conversely.The integral representation gives sense to the following result, which is the objective of this paper, in terms of the point function: if β is a subalgebra of θ, for every F of V1(Ω, θ, J) there exists a unique element of V1(Ω, θ, J) which we note down by E(F/β), conditional expectation of F given β.E(F/β) is characterized by (E(F/β), G) = (F, G) for every G of V∞(Ω, β, J). Aside from this, the mapping E(./β): V1(Ω, θ, J) → V1(Ω, β, J) is lineal, positive, contractive, idempotent and E(J/β) = J. If F is of Vp(Ω, θ, J), p > 1, E(F/β) is of Vp(Ω, β, J).

How to cite

top

Sarabia, Luis A.. "Esperanza condicionada para probabilidades finitamente aditivas.." Trabajos de Estadística e Investigación Operativa 33.1 (1982): 64-85. <http://eudml.org/doc/40677>.

@article{Sarabia1982,
author = {Sarabia, Luis A.},
journal = {Trabajos de Estadística e Investigación Operativa},
keywords = {Probabilidad; Esperanza condicionada; finitely additive probability; conditional expectation; Dunford-Schwartz integral},
language = {spa},
number = {1},
pages = {64-85},
title = {Esperanza condicionada para probabilidades finitamente aditivas.},
url = {http://eudml.org/doc/40677},
volume = {33},
year = {1982},
}

TY - JOUR
AU - Sarabia, Luis A.
TI - Esperanza condicionada para probabilidades finitamente aditivas.
JO - Trabajos de Estadística e Investigación Operativa
PY - 1982
VL - 33
IS - 1
SP - 64
EP - 85
LA - spa
KW - Probabilidad; Esperanza condicionada; finitely additive probability; conditional expectation; Dunford-Schwartz integral
UR - http://eudml.org/doc/40677
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.