On Musielak-Orlicz spaces isometric to L2 or L∞.
Collectanea Mathematica (1997)
- Volume: 48, Issue: 4-5-6, page 563-569
- ISSN: 0010-0757
Access Full Article
topAbstract
topHow to cite
topKaminska, Anna. "On Musielak-Orlicz spaces isometric to L2 or L∞.." Collectanea Mathematica 48.4-5-6 (1997): 563-569. <http://eudml.org/doc/40806>.
@article{Kaminska1997,
abstract = {It is proved that a Musielak-Orlicz space LΦ of real valued functions which is isometric to a Hilbert space coincides with L2 up to a weight, that is Φ(u,t) = c(t) u2. Moreover it is shown that any surjective isometry between LΦ and L∞ is a weighted composition operator and a criterion for LΦ to be isometric to L∞ is presented.},
author = {Kaminska, Anna},
journal = {Collectanea Mathematica},
keywords = {Espacio de Orlicz; Funciones reales; Función de valor; Distribución ponderada; Espacios de Hilbert; Isometría; Operadores; Musiełak-Orlicz; surjective isometry; weighted composition operator},
language = {eng},
number = {4-5-6},
pages = {563-569},
title = {On Musielak-Orlicz spaces isometric to L2 or L∞.},
url = {http://eudml.org/doc/40806},
volume = {48},
year = {1997},
}
TY - JOUR
AU - Kaminska, Anna
TI - On Musielak-Orlicz spaces isometric to L2 or L∞.
JO - Collectanea Mathematica
PY - 1997
VL - 48
IS - 4-5-6
SP - 563
EP - 569
AB - It is proved that a Musielak-Orlicz space LΦ of real valued functions which is isometric to a Hilbert space coincides with L2 up to a weight, that is Φ(u,t) = c(t) u2. Moreover it is shown that any surjective isometry between LΦ and L∞ is a weighted composition operator and a criterion for LΦ to be isometric to L∞ is presented.
LA - eng
KW - Espacio de Orlicz; Funciones reales; Función de valor; Distribución ponderada; Espacios de Hilbert; Isometría; Operadores; Musiełak-Orlicz; surjective isometry; weighted composition operator
UR - http://eudml.org/doc/40806
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.