# On the existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems.

Jacqueline Fleckinger; Jesús Hernández; François De Thélin

RACSAM (2003)

- Volume: 97, Issue: 3, page 461-466
- ISSN: 1578-7303

## Access Full Article

top## Abstract

top## How to cite

topFleckinger, Jacqueline, Hernández, Jesús, and De Thélin, François. "On the existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems.." RACSAM 97.3 (2003): 461-466. <http://eudml.org/doc/40993>.

@article{Fleckinger2003,

abstract = {We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the inverse of the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.},

author = {Fleckinger, Jacqueline, Hernández, Jesús, De Thélin, François},

journal = {RACSAM},

keywords = {Ecuaciones diferenciales en derivadas parciales; Problemas de autovalores; Teorema de existencia; principal eigenvalue; indefinite problems; spectral radius; variational characterization; Krein-Rutman theorem},

language = {eng},

number = {3},

pages = {461-466},

title = {On the existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems.},

url = {http://eudml.org/doc/40993},

volume = {97},

year = {2003},

}

TY - JOUR

AU - Fleckinger, Jacqueline

AU - Hernández, Jesús

AU - De Thélin, François

TI - On the existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems.

JO - RACSAM

PY - 2003

VL - 97

IS - 3

SP - 461

EP - 466

AB - We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the inverse of the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.

LA - eng

KW - Ecuaciones diferenciales en derivadas parciales; Problemas de autovalores; Teorema de existencia; principal eigenvalue; indefinite problems; spectral radius; variational characterization; Krein-Rutman theorem

UR - http://eudml.org/doc/40993

ER -