On the existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems.
Jacqueline Fleckinger; Jesús Hernández; François De Thélin
RACSAM (2003)
- Volume: 97, Issue: 3, page 461-466
- ISSN: 1578-7303
Access Full Article
topAbstract
topHow to cite
topFleckinger, Jacqueline, Hernández, Jesús, and De Thélin, François. "On the existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems.." RACSAM 97.3 (2003): 461-466. <http://eudml.org/doc/40993>.
@article{Fleckinger2003,
abstract = {We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the inverse of the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.},
author = {Fleckinger, Jacqueline, Hernández, Jesús, De Thélin, François},
journal = {RACSAM},
keywords = {Ecuaciones diferenciales en derivadas parciales; Problemas de autovalores; Teorema de existencia; principal eigenvalue; indefinite problems; spectral radius; variational characterization; Krein-Rutman theorem},
language = {eng},
number = {3},
pages = {461-466},
title = {On the existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems.},
url = {http://eudml.org/doc/40993},
volume = {97},
year = {2003},
}
TY - JOUR
AU - Fleckinger, Jacqueline
AU - Hernández, Jesús
AU - De Thélin, François
TI - On the existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems.
JO - RACSAM
PY - 2003
VL - 97
IS - 3
SP - 461
EP - 466
AB - We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the inverse of the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.
LA - eng
KW - Ecuaciones diferenciales en derivadas parciales; Problemas de autovalores; Teorema de existencia; principal eigenvalue; indefinite problems; spectral radius; variational characterization; Krein-Rutman theorem
UR - http://eudml.org/doc/40993
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.