# Aproximation of Z2-cocycles and shift dynamical systems.

I. Filipowicz; J. Kwiatkowski; M. Lemanczyk

Publicacions Matemàtiques (1988)

- Volume: 32, Issue: 1, page 91-110
- ISSN: 0214-1493

## Access Full Article

top## Abstract

top## How to cite

topFilipowicz, I., Kwiatkowski, J., and Lemanczyk, M.. "Aproximation of Z2-cocycles and shift dynamical systems.." Publicacions Matemàtiques 32.1 (1988): 91-110. <http://eudml.org/doc/41043>.

@article{Filipowicz1988,

abstract = {Let Gbar = G\{nt, nt | nt+1, t ≥ 0\} be a subgroup of all roots of unity generated by exp(2πi/nt\}, t ≥ 0, and let τ: (X, β, μ) O be an ergodic transformation with pure point spectrum Gbar. Given a cocycle φ, φ: X → Z2, admitting an approximation with speed 0(1/n1+ε, ε>0) there exists a Morse cocycle φ such that the corresponding transformations τφ and τψ are relatively isomorphic. An effective way of a construction of the Morse cocycle φ is given. There is a cocycle φ oddly approximated with an arbitrarily high speed and without roots.This note delivers examples of φ's admitting an arbitrarily high speed of approximation and such that the power multiplicity function of τφ is equal to one and the power rank function is oscillatory. Finally, we also prove that if φ is a Morse cocycle then each proper factor of τφ is rigid. In particular continuous substitutions on two symbols cannot be factors of Morse dynamical systems.},

author = {Filipowicz, I., Kwiatkowski, J., Lemanczyk, M.},

journal = {Publicacions Matemàtiques},

keywords = {Teoría ergódica; Aproximación; approximation; ergodic transformation; Morse cocycle},

language = {eng},

number = {1},

pages = {91-110},

title = {Aproximation of Z2-cocycles and shift dynamical systems.},

url = {http://eudml.org/doc/41043},

volume = {32},

year = {1988},

}

TY - JOUR

AU - Filipowicz, I.

AU - Kwiatkowski, J.

AU - Lemanczyk, M.

TI - Aproximation of Z2-cocycles and shift dynamical systems.

JO - Publicacions Matemàtiques

PY - 1988

VL - 32

IS - 1

SP - 91

EP - 110

AB - Let Gbar = G{nt, nt | nt+1, t ≥ 0} be a subgroup of all roots of unity generated by exp(2πi/nt}, t ≥ 0, and let τ: (X, β, μ) O be an ergodic transformation with pure point spectrum Gbar. Given a cocycle φ, φ: X → Z2, admitting an approximation with speed 0(1/n1+ε, ε>0) there exists a Morse cocycle φ such that the corresponding transformations τφ and τψ are relatively isomorphic. An effective way of a construction of the Morse cocycle φ is given. There is a cocycle φ oddly approximated with an arbitrarily high speed and without roots.This note delivers examples of φ's admitting an arbitrarily high speed of approximation and such that the power multiplicity function of τφ is equal to one and the power rank function is oscillatory. Finally, we also prove that if φ is a Morse cocycle then each proper factor of τφ is rigid. In particular continuous substitutions on two symbols cannot be factors of Morse dynamical systems.

LA - eng

KW - Teoría ergódica; Aproximación; approximation; ergodic transformation; Morse cocycle

UR - http://eudml.org/doc/41043

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.