Aproximation of Z2-cocycles and shift dynamical systems.

I. Filipowicz; J. Kwiatkowski; M. Lemanczyk

Publicacions Matemàtiques (1988)

  • Volume: 32, Issue: 1, page 91-110
  • ISSN: 0214-1493

Abstract

top
Let Gbar = G{nt, nt | nt+1, t ≥ 0} be a subgroup of all roots of unity generated by exp(2πi/nt}, t ≥ 0, and let τ: (X, β, μ) O be an ergodic transformation with pure point spectrum Gbar. Given a cocycle φ, φ: X → Z2, admitting an approximation with speed 0(1/n1+ε, ε>0) there exists a Morse cocycle φ such that the corresponding transformations τφ and τψ are relatively isomorphic. An effective way of a construction of the Morse cocycle φ is given. There is a cocycle φ oddly approximated with an arbitrarily high speed and without roots.This note delivers examples of φ's admitting an arbitrarily high speed of approximation and such that the power multiplicity function of τφ is equal to one and the power rank function is oscillatory. Finally, we also prove that if φ is a Morse cocycle then each proper factor of τφ is rigid. In particular continuous substitutions on two symbols cannot be factors of Morse dynamical systems.

How to cite

top

Filipowicz, I., Kwiatkowski, J., and Lemanczyk, M.. "Aproximation of Z2-cocycles and shift dynamical systems.." Publicacions Matemàtiques 32.1 (1988): 91-110. <http://eudml.org/doc/41043>.

@article{Filipowicz1988,
abstract = {Let Gbar = G\{nt, nt | nt+1, t ≥ 0\} be a subgroup of all roots of unity generated by exp(2πi/nt\}, t ≥ 0, and let τ: (X, β, μ) O be an ergodic transformation with pure point spectrum Gbar. Given a cocycle φ, φ: X → Z2, admitting an approximation with speed 0(1/n1+ε, ε&gt;0) there exists a Morse cocycle φ such that the corresponding transformations τφ and τψ are relatively isomorphic. An effective way of a construction of the Morse cocycle φ is given. There is a cocycle φ oddly approximated with an arbitrarily high speed and without roots.This note delivers examples of φ's admitting an arbitrarily high speed of approximation and such that the power multiplicity function of τφ is equal to one and the power rank function is oscillatory. Finally, we also prove that if φ is a Morse cocycle then each proper factor of τφ is rigid. In particular continuous substitutions on two symbols cannot be factors of Morse dynamical systems.},
author = {Filipowicz, I., Kwiatkowski, J., Lemanczyk, M.},
journal = {Publicacions Matemàtiques},
keywords = {Teoría ergódica; Aproximación; approximation; ergodic transformation; Morse cocycle},
language = {eng},
number = {1},
pages = {91-110},
title = {Aproximation of Z2-cocycles and shift dynamical systems.},
url = {http://eudml.org/doc/41043},
volume = {32},
year = {1988},
}

TY - JOUR
AU - Filipowicz, I.
AU - Kwiatkowski, J.
AU - Lemanczyk, M.
TI - Aproximation of Z2-cocycles and shift dynamical systems.
JO - Publicacions Matemàtiques
PY - 1988
VL - 32
IS - 1
SP - 91
EP - 110
AB - Let Gbar = G{nt, nt | nt+1, t ≥ 0} be a subgroup of all roots of unity generated by exp(2πi/nt}, t ≥ 0, and let τ: (X, β, μ) O be an ergodic transformation with pure point spectrum Gbar. Given a cocycle φ, φ: X → Z2, admitting an approximation with speed 0(1/n1+ε, ε&gt;0) there exists a Morse cocycle φ such that the corresponding transformations τφ and τψ are relatively isomorphic. An effective way of a construction of the Morse cocycle φ is given. There is a cocycle φ oddly approximated with an arbitrarily high speed and without roots.This note delivers examples of φ's admitting an arbitrarily high speed of approximation and such that the power multiplicity function of τφ is equal to one and the power rank function is oscillatory. Finally, we also prove that if φ is a Morse cocycle then each proper factor of τφ is rigid. In particular continuous substitutions on two symbols cannot be factors of Morse dynamical systems.
LA - eng
KW - Teoría ergódica; Aproximación; approximation; ergodic transformation; Morse cocycle
UR - http://eudml.org/doc/41043
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.