Unitary subgroup of integral group rings.
Adalbert A. Bovdi; Sudarshan K. Sehgal
Publicacions Matemàtiques (1992)
- Volume: 36, Issue: 1, page 197-204
- ISSN: 0214-1493
Access Full Article
topAbstract
topHow to cite
topBovdi, Adalbert A., and Sehgal, Sudarshan K.. "Unitary subgroup of integral group rings.." Publicacions Matemàtiques 36.1 (1992): 197-204. <http://eudml.org/doc/41158>.
@article{Bovdi1992,
abstract = {Let A be a finite abelian group and G = A x 〈b〉, b2 = 1, ab = a-1, ∀a ∈ A. We find generators up to finite index of the unitary subgroup of ZG. In fact, the generators are the bicyclic units. For an arbitrary group G, let B2(ZG) denote the group generated by the bicyclic units. We classify groups G such that B2(ZG) is unitary.},
author = {Bovdi, Adalbert A., Sehgal, Sudarshan K.},
journal = {Publicacions Matemàtiques},
keywords = {Familias de subgrupos; Grupo unitario; Anillos; Generadores; finitely generated subgroups; unit group; integral group ring; bicyclic units; dihedral; finite index},
language = {eng},
number = {1},
pages = {197-204},
title = {Unitary subgroup of integral group rings.},
url = {http://eudml.org/doc/41158},
volume = {36},
year = {1992},
}
TY - JOUR
AU - Bovdi, Adalbert A.
AU - Sehgal, Sudarshan K.
TI - Unitary subgroup of integral group rings.
JO - Publicacions Matemàtiques
PY - 1992
VL - 36
IS - 1
SP - 197
EP - 204
AB - Let A be a finite abelian group and G = A x 〈b〉, b2 = 1, ab = a-1, ∀a ∈ A. We find generators up to finite index of the unitary subgroup of ZG. In fact, the generators are the bicyclic units. For an arbitrary group G, let B2(ZG) denote the group generated by the bicyclic units. We classify groups G such that B2(ZG) is unitary.
LA - eng
KW - Familias de subgrupos; Grupo unitario; Anillos; Generadores; finitely generated subgroups; unit group; integral group ring; bicyclic units; dihedral; finite index
UR - http://eudml.org/doc/41158
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.