# Isoperimetric inequalities and Dirichlet functions of Riemann surfaces.

Publicacions Matemàtiques (1994)

- Volume: 38, Issue: 1, page 243-253
- ISSN: 0214-1493

## Access Full Article

top## Abstract

top## How to cite

topRodríguez, José M.. "Isoperimetric inequalities and Dirichlet functions of Riemann surfaces.." Publicacions Matemàtiques 38.1 (1994): 243-253. <http://eudml.org/doc/41191>.

@article{Rodríguez1994,

abstract = {We prove that if a Riemann surface has a linear isoperimetric inequality and verifies an extra condition of regularity, then there exists a non-constant harmonic function with finite Dirichlet integral in the surface.We prove too, by an example, that the implication is not true without the condition of regularity.},

author = {Rodríguez, José M.},

journal = {Publicacions Matemàtiques},

keywords = {Superficies Riemann; Series de Dirichlet; Función armónica},

language = {eng},

number = {1},

pages = {243-253},

title = {Isoperimetric inequalities and Dirichlet functions of Riemann surfaces.},

url = {http://eudml.org/doc/41191},

volume = {38},

year = {1994},

}

TY - JOUR

AU - Rodríguez, José M.

TI - Isoperimetric inequalities and Dirichlet functions of Riemann surfaces.

JO - Publicacions Matemàtiques

PY - 1994

VL - 38

IS - 1

SP - 243

EP - 253

AB - We prove that if a Riemann surface has a linear isoperimetric inequality and verifies an extra condition of regularity, then there exists a non-constant harmonic function with finite Dirichlet integral in the surface.We prove too, by an example, that the implication is not true without the condition of regularity.

LA - eng

KW - Superficies Riemann; Series de Dirichlet; Función armónica

UR - http://eudml.org/doc/41191

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.