Isoperimetric inequalities and Dirichlet functions of Riemann surfaces.
Publicacions Matemàtiques (1994)
- Volume: 38, Issue: 1, page 243-253
- ISSN: 0214-1493
Access Full Article
topAbstract
topHow to cite
topRodríguez, José M.. "Isoperimetric inequalities and Dirichlet functions of Riemann surfaces.." Publicacions Matemàtiques 38.1 (1994): 243-253. <http://eudml.org/doc/41191>.
@article{Rodríguez1994,
abstract = {We prove that if a Riemann surface has a linear isoperimetric inequality and verifies an extra condition of regularity, then there exists a non-constant harmonic function with finite Dirichlet integral in the surface.We prove too, by an example, that the implication is not true without the condition of regularity.},
author = {Rodríguez, José M.},
journal = {Publicacions Matemàtiques},
keywords = {Superficies Riemann; Series de Dirichlet; Función armónica},
language = {eng},
number = {1},
pages = {243-253},
title = {Isoperimetric inequalities and Dirichlet functions of Riemann surfaces.},
url = {http://eudml.org/doc/41191},
volume = {38},
year = {1994},
}
TY - JOUR
AU - Rodríguez, José M.
TI - Isoperimetric inequalities and Dirichlet functions of Riemann surfaces.
JO - Publicacions Matemàtiques
PY - 1994
VL - 38
IS - 1
SP - 243
EP - 253
AB - We prove that if a Riemann surface has a linear isoperimetric inequality and verifies an extra condition of regularity, then there exists a non-constant harmonic function with finite Dirichlet integral in the surface.We prove too, by an example, that the implication is not true without the condition of regularity.
LA - eng
KW - Superficies Riemann; Series de Dirichlet; Función armónica
UR - http://eudml.org/doc/41191
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.