top
Let G be a finitely generated group. We give a new characterization of its Bieri-Neumann-Strebel invariant Σ(G), in terms of geometric abelian actions on R-trees. We provide a proof of Brown's characterization of Σ(G) by exceptional abelian actions of G, using geometric methods.
Levitt, Gilbert. "R-trees and the Bieri-Neumann-Strebel invariant.." Publicacions Matemàtiques 38.1 (1994): 195-202. <http://eudml.org/doc/41197>.
@article{Levitt1994, abstract = {Let G be a finitely generated group. We give a new characterization of its Bieri-Neumann-Strebel invariant Σ(G), in terms of geometric abelian actions on R-trees. We provide a proof of Brown's characterization of Σ(G) by exceptional abelian actions of G, using geometric methods.}, author = {Levitt, Gilbert}, journal = {Publicacions Matemàtiques}, keywords = {Invariantes topológicos; Formas diferenciales; Arboles topológicos; Cohomología; Variedad cerrada; actions on -trees; finitely generated groups}, language = {eng}, number = {1}, pages = {195-202}, title = {R-trees and the Bieri-Neumann-Strebel invariant.}, url = {http://eudml.org/doc/41197}, volume = {38}, year = {1994}, }
TY - JOUR AU - Levitt, Gilbert TI - R-trees and the Bieri-Neumann-Strebel invariant. JO - Publicacions Matemàtiques PY - 1994 VL - 38 IS - 1 SP - 195 EP - 202 AB - Let G be a finitely generated group. We give a new characterization of its Bieri-Neumann-Strebel invariant Σ(G), in terms of geometric abelian actions on R-trees. We provide a proof of Brown's characterization of Σ(G) by exceptional abelian actions of G, using geometric methods. LA - eng KW - Invariantes topológicos; Formas diferenciales; Arboles topológicos; Cohomología; Variedad cerrada; actions on -trees; finitely generated groups UR - http://eudml.org/doc/41197 ER -