R-trees and the Bieri-Neumann-Strebel invariant.

Gilbert Levitt

Publicacions Matemàtiques (1994)

  • Volume: 38, Issue: 1, page 195-202
  • ISSN: 0214-1493

Abstract

top
Let G be a finitely generated group. We give a new characterization of its Bieri-Neumann-Strebel invariant Σ(G), in terms of geometric abelian actions on R-trees. We provide a proof of Brown's characterization of Σ(G) by exceptional abelian actions of G, using geometric methods.

How to cite

top

Levitt, Gilbert. "R-trees and the Bieri-Neumann-Strebel invariant.." Publicacions Matemàtiques 38.1 (1994): 195-202. <http://eudml.org/doc/41197>.

@article{Levitt1994,
abstract = {Let G be a finitely generated group. We give a new characterization of its Bieri-Neumann-Strebel invariant Σ(G), in terms of geometric abelian actions on R-trees. We provide a proof of Brown's characterization of Σ(G) by exceptional abelian actions of G, using geometric methods.},
author = {Levitt, Gilbert},
journal = {Publicacions Matemàtiques},
keywords = {Invariantes topológicos; Formas diferenciales; Arboles topológicos; Cohomología; Variedad cerrada; actions on -trees; finitely generated groups},
language = {eng},
number = {1},
pages = {195-202},
title = {R-trees and the Bieri-Neumann-Strebel invariant.},
url = {http://eudml.org/doc/41197},
volume = {38},
year = {1994},
}

TY - JOUR
AU - Levitt, Gilbert
TI - R-trees and the Bieri-Neumann-Strebel invariant.
JO - Publicacions Matemàtiques
PY - 1994
VL - 38
IS - 1
SP - 195
EP - 202
AB - Let G be a finitely generated group. We give a new characterization of its Bieri-Neumann-Strebel invariant Σ(G), in terms of geometric abelian actions on R-trees. We provide a proof of Brown's characterization of Σ(G) by exceptional abelian actions of G, using geometric methods.
LA - eng
KW - Invariantes topológicos; Formas diferenciales; Arboles topológicos; Cohomología; Variedad cerrada; actions on -trees; finitely generated groups
UR - http://eudml.org/doc/41197
ER -

NotesEmbed ?

top

You must be logged in to post comments.