On a pointwise ergodic theorem for multiparameter semigroups.

Ryotaro Sato

Publicacions Matemàtiques (1994)

  • Volume: 38, Issue: 1, page 81-87
  • ISSN: 0214-1493

Abstract

top
Let Ti (i = 1, 2, ..., d) be commuting null preserving transformations on a finite measure space (X, F, μ) and let 1 ≤ p < ∞. In this paper we prove that for every f ∈ Lp(μ) the averagesAnf(x) = (n + 1)-d Σ0≤ni≤n f(T1n1T2n2 ... Tdnd x)converge a.e. on X if and only if there exists a finite invariant measure ν (under the transformations Ti) absolutely continuous with respect to μ and a sequence {XN} of invariant sets with XN ↑ X such that νB > 0 for all nonnull invariant sets B and such that the Radon-Nykodim derivative v = dν/dμ satisfies v ∈ Lq(xN,μ), 1/p + 1/q = 1, for each N ≥ 1.

How to cite

top

Sato, Ryotaro. "On a pointwise ergodic theorem for multiparameter semigroups.." Publicacions Matemàtiques 38.1 (1994): 81-87. <http://eudml.org/doc/41203>.

@article{Sato1994,
abstract = {Let Ti (i = 1, 2, ..., d) be commuting null preserving transformations on a finite measure space (X, F, μ) and let 1 ≤ p &lt; ∞. In this paper we prove that for every f ∈ Lp(μ) the averagesAnf(x) = (n + 1)-d Σ0≤ni≤n f(T1n1T2n2 ... Tdnd x)converge a.e. on X if and only if there exists a finite invariant measure ν (under the transformations Ti) absolutely continuous with respect to μ and a sequence \{XN\} of invariant sets with XN ↑ X such that νB &gt; 0 for all nonnull invariant sets B and such that the Radon-Nykodim derivative v = dν/dμ satisfies v ∈ Lq(xN,μ), 1/p + 1/q = 1, for each N ≥ 1.},
author = {Sato, Ryotaro},
journal = {Publicacions Matemàtiques},
keywords = {Teoría ergódica; Espacio de medida; Teorema de Radon-Nikodym; pointwise ergodic theorem; multiparameter semigroups; null preserving transformations; invariant measure; invariant sets; Radon-Nikodým derivative},
language = {eng},
number = {1},
pages = {81-87},
title = {On a pointwise ergodic theorem for multiparameter semigroups.},
url = {http://eudml.org/doc/41203},
volume = {38},
year = {1994},
}

TY - JOUR
AU - Sato, Ryotaro
TI - On a pointwise ergodic theorem for multiparameter semigroups.
JO - Publicacions Matemàtiques
PY - 1994
VL - 38
IS - 1
SP - 81
EP - 87
AB - Let Ti (i = 1, 2, ..., d) be commuting null preserving transformations on a finite measure space (X, F, μ) and let 1 ≤ p &lt; ∞. In this paper we prove that for every f ∈ Lp(μ) the averagesAnf(x) = (n + 1)-d Σ0≤ni≤n f(T1n1T2n2 ... Tdnd x)converge a.e. on X if and only if there exists a finite invariant measure ν (under the transformations Ti) absolutely continuous with respect to μ and a sequence {XN} of invariant sets with XN ↑ X such that νB &gt; 0 for all nonnull invariant sets B and such that the Radon-Nykodim derivative v = dν/dμ satisfies v ∈ Lq(xN,μ), 1/p + 1/q = 1, for each N ≥ 1.
LA - eng
KW - Teoría ergódica; Espacio de medida; Teorema de Radon-Nikodym; pointwise ergodic theorem; multiparameter semigroups; null preserving transformations; invariant measure; invariant sets; Radon-Nikodým derivative
UR - http://eudml.org/doc/41203
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.