Projections on Hardy spaces in the Lie ball.
Publicacions Matemàtiques (1994)
- Volume: 38, Issue: 1, page 57-68
- ISSN: 0214-1493
Access Full Article
topAbstract
topHow to cite
topBekollé, David. "Projections on Hardy spaces in the Lie ball.." Publicacions Matemàtiques 38.1 (1994): 57-68. <http://eudml.org/doc/41205>.
@article{Bekollé1994,
abstract = {On the Lie ball w of Cn, n ≥ 3, we prove that for all p ∈ [1,∞), p ≠ 2, the Hardy space Hp(w) is an uncomplemented subspace of the Lebesgue space Lp(∂0w, dσ), where ∂0w denotes the Shilov boundary of w and dσ is a normalized invariant measure of ∂0w.},
author = {Bekollé, David},
journal = {Publicacions Matemàtiques},
keywords = {Espacios de Hardy; Análisis armónico; Bola unidad; Lie ball; Hardy space; uncomplemented subspace of the Lebesgue space; Shilov boundary},
language = {eng},
number = {1},
pages = {57-68},
title = {Projections on Hardy spaces in the Lie ball.},
url = {http://eudml.org/doc/41205},
volume = {38},
year = {1994},
}
TY - JOUR
AU - Bekollé, David
TI - Projections on Hardy spaces in the Lie ball.
JO - Publicacions Matemàtiques
PY - 1994
VL - 38
IS - 1
SP - 57
EP - 68
AB - On the Lie ball w of Cn, n ≥ 3, we prove that for all p ∈ [1,∞), p ≠ 2, the Hardy space Hp(w) is an uncomplemented subspace of the Lebesgue space Lp(∂0w, dσ), where ∂0w denotes the Shilov boundary of w and dσ is a normalized invariant measure of ∂0w.
LA - eng
KW - Espacios de Hardy; Análisis armónico; Bola unidad; Lie ball; Hardy space; uncomplemented subspace of the Lebesgue space; Shilov boundary
UR - http://eudml.org/doc/41205
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.