Nilpotent subgroups of the group of fibre homotopy equivalences.
Yves Félix; Jean-Claude Thomas
Publicacions Matemàtiques (1995)
- Volume: 39, Issue: 1, page 95-106
- ISSN: 0214-1493
Access Full Article
topAbstract
topHow to cite
topFélix, Yves, and Thomas, Jean-Claude. "Nilpotent subgroups of the group of fibre homotopy equivalences.." Publicacions Matemàtiques 39.1 (1995): 95-106. <http://eudml.org/doc/41218>.
@article{Félix1995,
abstract = {Let ξ = (E, p, B, F) be a Hurewicz fibration. In this paper we study the space LG(ξ) consisting of fibre homotopy self equivalences of ξ inducing by restriction to the fibre a self homotopy equivalence of F belonging to the group G. We give in particular conditions implying that π1(LG(ξ)) is finitely generated or that L1(ξ) has the same rational homotopy type as aut1(F).},
author = {Félix, Yves, Thomas, Jean-Claude},
journal = {Publicacions Matemàtiques},
keywords = {Equivalencias de homotopía fibradas; Grupo nilpotente; fibre homotopy self-equivalences},
language = {eng},
number = {1},
pages = {95-106},
title = {Nilpotent subgroups of the group of fibre homotopy equivalences.},
url = {http://eudml.org/doc/41218},
volume = {39},
year = {1995},
}
TY - JOUR
AU - Félix, Yves
AU - Thomas, Jean-Claude
TI - Nilpotent subgroups of the group of fibre homotopy equivalences.
JO - Publicacions Matemàtiques
PY - 1995
VL - 39
IS - 1
SP - 95
EP - 106
AB - Let ξ = (E, p, B, F) be a Hurewicz fibration. In this paper we study the space LG(ξ) consisting of fibre homotopy self equivalences of ξ inducing by restriction to the fibre a self homotopy equivalence of F belonging to the group G. We give in particular conditions implying that π1(LG(ξ)) is finitely generated or that L1(ξ) has the same rational homotopy type as aut1(F).
LA - eng
KW - Equivalencias de homotopía fibradas; Grupo nilpotente; fibre homotopy self-equivalences
UR - http://eudml.org/doc/41218
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.