top
By a variant of the standard good λ inequality, we prove the Muckenhoupt-Wheeden inequality for measures which are not necessarily in the Muckenhoupt class. Moreover we can deal with a general potential operator, and consequently we obtain a suitable approach to the two weight inequality for such an operator when one of the weight functions satisfies a reverse doubling condition.
Rakotondratsimba, Y.. "Improved Muckenhoupt-Wheeden inequality and weighted inequalities for potential operators.." Publicacions Matemàtiques 39.1 (1995): 23-41. <http://eudml.org/doc/41223>.
@article{Rakotondratsimba1995, abstract = {By a variant of the standard good λ inequality, we prove the Muckenhoupt-Wheeden inequality for measures which are not necessarily in the Muckenhoupt class. Moreover we can deal with a general potential operator, and consequently we obtain a suitable approach to the two weight inequality for such an operator when one of the weight functions satisfies a reverse doubling condition.}, author = {Rakotondratsimba, Y.}, journal = {Publicacions Matemàtiques}, keywords = {Algebra de operadores; Operadores maximales; Ecuación del potencial; Desigualdades; Funciones de peso; inequality; Muckenhoupt-Wheeden inequality; Muckenhoupt class; potential operator; weight functions; reverse doubling condition}, language = {eng}, number = {1}, pages = {23-41}, title = {Improved Muckenhoupt-Wheeden inequality and weighted inequalities for potential operators.}, url = {http://eudml.org/doc/41223}, volume = {39}, year = {1995}, }
TY - JOUR AU - Rakotondratsimba, Y. TI - Improved Muckenhoupt-Wheeden inequality and weighted inequalities for potential operators. JO - Publicacions Matemàtiques PY - 1995 VL - 39 IS - 1 SP - 23 EP - 41 AB - By a variant of the standard good λ inequality, we prove the Muckenhoupt-Wheeden inequality for measures which are not necessarily in the Muckenhoupt class. Moreover we can deal with a general potential operator, and consequently we obtain a suitable approach to the two weight inequality for such an operator when one of the weight functions satisfies a reverse doubling condition. LA - eng KW - Algebra de operadores; Operadores maximales; Ecuación del potencial; Desigualdades; Funciones de peso; inequality; Muckenhoupt-Wheeden inequality; Muckenhoupt class; potential operator; weight functions; reverse doubling condition UR - http://eudml.org/doc/41223 ER -