On the definition of the dual Lie coalgebra of a Lie algebra.
Publicacions Matemàtiques (1995)
- Volume: 39, Issue: 2, page 349-354
- ISSN: 0214-1493
Access Full Article
topAbstract
topHow to cite
topDiarra, Bertin. "On the definition of the dual Lie coalgebra of a Lie algebra.." Publicacions Matemàtiques 39.2 (1995): 349-354. <http://eudml.org/doc/41231>.
@article{Diarra1995,
abstract = {Let L be a Lie algebra over a field K. The dual Lie coalgebra Lº of L has been defined by W. Michaelis to be the sum of all good subspaces V of the dual space L* of L: V is good if tm(V) ⊂ V ⊗ V, where m is the multiplication of L. We show that Lº = tm-1(L* ⊗ L*) as in the associative case.},
author = {Diarra, Bertin},
journal = {Publicacions Matemàtiques},
keywords = {Algebra de Lie; Espacio dual; multiplication maps; continuous dual coalgebras; Lie algebras; continuous dual Lie coalgebras},
language = {eng},
number = {2},
pages = {349-354},
title = {On the definition of the dual Lie coalgebra of a Lie algebra.},
url = {http://eudml.org/doc/41231},
volume = {39},
year = {1995},
}
TY - JOUR
AU - Diarra, Bertin
TI - On the definition of the dual Lie coalgebra of a Lie algebra.
JO - Publicacions Matemàtiques
PY - 1995
VL - 39
IS - 2
SP - 349
EP - 354
AB - Let L be a Lie algebra over a field K. The dual Lie coalgebra Lº of L has been defined by W. Michaelis to be the sum of all good subspaces V of the dual space L* of L: V is good if tm(V) ⊂ V ⊗ V, where m is the multiplication of L. We show that Lº = tm-1(L* ⊗ L*) as in the associative case.
LA - eng
KW - Algebra de Lie; Espacio dual; multiplication maps; continuous dual coalgebras; Lie algebras; continuous dual Lie coalgebras
UR - http://eudml.org/doc/41231
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.