Calculating the genus of a direct product of certain nilpotent groups.
Publicacions Matemàtiques (1995)
- Volume: 39, Issue: 2, page 241-261
- ISSN: 0214-1493
Access Full Article
topAbstract
topHow to cite
topHilton, Peter, and Scevenels, Dirk. "Calculating the genus of a direct product of certain nilpotent groups.." Publicacions Matemàtiques 39.2 (1995): 241-261. <http://eudml.org/doc/41238>.
@article{Hilton1995,
abstract = {The Mislin genus G(N) of a finitely generated nilpotent group N with finite commutator subgroup admits an abelian group structure. If N satisfies some additional conditions -we say that N belongs to N1- we know exactly the structure of G(N). Considering a direct product N1 x ... x Nk of groups in N1 takes us virtually always out of N1. We here calculate the Mislin genus of such a direct product.},
author = {Hilton, Peter, Scevenels, Dirk},
journal = {Publicacions Matemàtiques},
keywords = {Grupo nilpotente; Grupos abelianos; Grupos finitos; Operador de rango finito; Mislin genus; direct product; finitely generated nilpotent groups; finite commutator subgroups},
language = {eng},
number = {2},
pages = {241-261},
title = {Calculating the genus of a direct product of certain nilpotent groups.},
url = {http://eudml.org/doc/41238},
volume = {39},
year = {1995},
}
TY - JOUR
AU - Hilton, Peter
AU - Scevenels, Dirk
TI - Calculating the genus of a direct product of certain nilpotent groups.
JO - Publicacions Matemàtiques
PY - 1995
VL - 39
IS - 2
SP - 241
EP - 261
AB - The Mislin genus G(N) of a finitely generated nilpotent group N with finite commutator subgroup admits an abelian group structure. If N satisfies some additional conditions -we say that N belongs to N1- we know exactly the structure of G(N). Considering a direct product N1 x ... x Nk of groups in N1 takes us virtually always out of N1. We here calculate the Mislin genus of such a direct product.
LA - eng
KW - Grupo nilpotente; Grupos abelianos; Grupos finitos; Operador de rango finito; Mislin genus; direct product; finitely generated nilpotent groups; finite commutator subgroups
UR - http://eudml.org/doc/41238
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.