# Calculating the genus of a direct product of certain nilpotent groups.

Publicacions Matemàtiques (1995)

- Volume: 39, Issue: 2, page 241-261
- ISSN: 0214-1493

## Access Full Article

top## Abstract

top## How to cite

topHilton, Peter, and Scevenels, Dirk. "Calculating the genus of a direct product of certain nilpotent groups.." Publicacions Matemàtiques 39.2 (1995): 241-261. <http://eudml.org/doc/41238>.

@article{Hilton1995,

abstract = {The Mislin genus G(N) of a finitely generated nilpotent group N with finite commutator subgroup admits an abelian group structure. If N satisfies some additional conditions -we say that N belongs to N1- we know exactly the structure of G(N). Considering a direct product N1 x ... x Nk of groups in N1 takes us virtually always out of N1. We here calculate the Mislin genus of such a direct product.},

author = {Hilton, Peter, Scevenels, Dirk},

journal = {Publicacions Matemàtiques},

keywords = {Grupo nilpotente; Grupos abelianos; Grupos finitos; Operador de rango finito; Mislin genus; direct product; finitely generated nilpotent groups; finite commutator subgroups},

language = {eng},

number = {2},

pages = {241-261},

title = {Calculating the genus of a direct product of certain nilpotent groups.},

url = {http://eudml.org/doc/41238},

volume = {39},

year = {1995},

}

TY - JOUR

AU - Hilton, Peter

AU - Scevenels, Dirk

TI - Calculating the genus of a direct product of certain nilpotent groups.

JO - Publicacions Matemàtiques

PY - 1995

VL - 39

IS - 2

SP - 241

EP - 261

AB - The Mislin genus G(N) of a finitely generated nilpotent group N with finite commutator subgroup admits an abelian group structure. If N satisfies some additional conditions -we say that N belongs to N1- we know exactly the structure of G(N). Considering a direct product N1 x ... x Nk of groups in N1 takes us virtually always out of N1. We here calculate the Mislin genus of such a direct product.

LA - eng

KW - Grupo nilpotente; Grupos abelianos; Grupos finitos; Operador de rango finito; Mislin genus; direct product; finitely generated nilpotent groups; finite commutator subgroups

UR - http://eudml.org/doc/41238

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.