Padua and Pisa are exponentially far apart.
Publicacions Matemàtiques (1997)
- Volume: 41, Issue: 2, page 631-651
- ISSN: 0214-1493
Access Full Article
topAbstract
topHow to cite
topDe Weger, Benjamin M. M.. "Padua and Pisa are exponentially far apart.." Publicacions Matemàtiques 41.2 (1997): 631-651. <http://eudml.org/doc/41299>.
@article{DeWeger1997,
abstract = {We answer the question posed by Ian Stewart which Padovan numbers are at the same time Fibonacci numbers. We give a result on the difference between Padovan and Fibonacci numbers, and on the growth of Padovan numbers with negative indices.},
author = {De Weger, Benjamin M. M.},
journal = {Publicacions Matemàtiques},
keywords = {Sucesiones numéricas; Números enteros; Números índices; Fibonacci numbers; linear forms in logarithms; computational diophantine approximation; Leonardo of Pisa numbers; Padovan numbers; ternary recurrence},
language = {eng},
number = {2},
pages = {631-651},
title = {Padua and Pisa are exponentially far apart.},
url = {http://eudml.org/doc/41299},
volume = {41},
year = {1997},
}
TY - JOUR
AU - De Weger, Benjamin M. M.
TI - Padua and Pisa are exponentially far apart.
JO - Publicacions Matemàtiques
PY - 1997
VL - 41
IS - 2
SP - 631
EP - 651
AB - We answer the question posed by Ian Stewart which Padovan numbers are at the same time Fibonacci numbers. We give a result on the difference between Padovan and Fibonacci numbers, and on the growth of Padovan numbers with negative indices.
LA - eng
KW - Sucesiones numéricas; Números enteros; Números índices; Fibonacci numbers; linear forms in logarithms; computational diophantine approximation; Leonardo of Pisa numbers; Padovan numbers; ternary recurrence
UR - http://eudml.org/doc/41299
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.