The multiplicative structure of K(n)* (BA4).

Maurizio Brunetti

Publicacions Matemàtiques (1997)

  • Volume: 41, Issue: 2, page 605-612
  • ISSN: 0214-1493

Abstract

top
Let K(n)*(-) be a Morava K-theory at the prime 2. Invariant theory is used to identify K(n)*(BA4) as a summand of K(n)*(BZ/2 × BZ/2). Similarities with H*(BA4;Z/2) are also discussed.

How to cite

top

Brunetti, Maurizio. "The multiplicative structure of K(n)* (BA4).." Publicacions Matemàtiques 41.2 (1997): 605-612. <http://eudml.org/doc/41301>.

@article{Brunetti1997,
abstract = {Let K(n)*(-) be a Morava K-theory at the prime 2. Invariant theory is used to identify K(n)*(BA4) as a summand of K(n)*(BZ/2 × BZ/2). Similarities with H*(BA4;Z/2) are also discussed.},
author = {Brunetti, Maurizio},
journal = {Publicacions Matemàtiques},
keywords = {Invariantes; Grupos finitos; Cohomología de grupos},
language = {eng},
number = {2},
pages = {605-612},
title = {The multiplicative structure of K(n)* (BA4).},
url = {http://eudml.org/doc/41301},
volume = {41},
year = {1997},
}

TY - JOUR
AU - Brunetti, Maurizio
TI - The multiplicative structure of K(n)* (BA4).
JO - Publicacions Matemàtiques
PY - 1997
VL - 41
IS - 2
SP - 605
EP - 612
AB - Let K(n)*(-) be a Morava K-theory at the prime 2. Invariant theory is used to identify K(n)*(BA4) as a summand of K(n)*(BZ/2 × BZ/2). Similarities with H*(BA4;Z/2) are also discussed.
LA - eng
KW - Invariantes; Grupos finitos; Cohomología de grupos
UR - http://eudml.org/doc/41301
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.