Two weight norm inequality for the fractional maximal operator and the fractional integral operator.

Yves Rakotondratsimba

Publicacions Matemàtiques (1998)

  • Volume: 42, Issue: 1, page 81-101
  • ISSN: 0214-1493

Abstract

top
New sufficient conditions on the weight functions u(.) and v(.) are given in order that the fractional maximal [resp. integral] operator Ms [resp. Is], 0 ≤ s < n, [resp. 0 < s < n] sends the weighted Lebesgue space Lp(v(x)dx) into Lp(u(x)dx), 1 < p < ∞. As a consequence a characterization for this estimate is obtained whenever the weight functions are radial monotone.

How to cite

top

Rakotondratsimba, Yves. "Two weight norm inequality for the fractional maximal operator and the fractional integral operator.." Publicacions Matemàtiques 42.1 (1998): 81-101. <http://eudml.org/doc/41336>.

@article{Rakotondratsimba1998,
abstract = {New sufficient conditions on the weight functions u(.) and v(.) are given in order that the fractional maximal [resp. integral] operator Ms [resp. Is], 0 ≤ s &lt; n, [resp. 0 &lt; s &lt; n] sends the weighted Lebesgue space Lp(v(x)dx) into Lp(u(x)dx), 1 &lt; p &lt; ∞. As a consequence a characterization for this estimate is obtained whenever the weight functions are radial monotone.},
author = {Rakotondratsimba, Yves},
journal = {Publicacions Matemàtiques},
keywords = {Operadores maximales; Operadores integrales; Análisis de Fourier; Funciones de peso; fractional maximal operator; fractional integrals; two-weight inequalities},
language = {eng},
number = {1},
pages = {81-101},
title = {Two weight norm inequality for the fractional maximal operator and the fractional integral operator.},
url = {http://eudml.org/doc/41336},
volume = {42},
year = {1998},
}

TY - JOUR
AU - Rakotondratsimba, Yves
TI - Two weight norm inequality for the fractional maximal operator and the fractional integral operator.
JO - Publicacions Matemàtiques
PY - 1998
VL - 42
IS - 1
SP - 81
EP - 101
AB - New sufficient conditions on the weight functions u(.) and v(.) are given in order that the fractional maximal [resp. integral] operator Ms [resp. Is], 0 ≤ s &lt; n, [resp. 0 &lt; s &lt; n] sends the weighted Lebesgue space Lp(v(x)dx) into Lp(u(x)dx), 1 &lt; p &lt; ∞. As a consequence a characterization for this estimate is obtained whenever the weight functions are radial monotone.
LA - eng
KW - Operadores maximales; Operadores integrales; Análisis de Fourier; Funciones de peso; fractional maximal operator; fractional integrals; two-weight inequalities
UR - http://eudml.org/doc/41336
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.