# On radial limit functions for entire solutions of second order elliptic equations in R2.

André Boivin; Peter V. Paramonov

Publicacions Matemàtiques (1998)

- Volume: 42, Issue: 2, page 509-519
- ISSN: 0214-1493

## Access Full Article

top## Abstract

top## How to cite

topBoivin, André, and Paramonov, Peter V.. "On radial limit functions for entire solutions of second order elliptic equations in R2.." Publicacions Matemàtiques 42.2 (1998): 509-519. <http://eudml.org/doc/41341>.

@article{Boivin1998,

abstract = {Given a homogeneous elliptic partial differential operator L of order two with constant complex coefficients in R2, we consider entire solutions of the equation Lu = 0 for whichlimr→∞ u(reiφ) =: U(eiφ)exists for all φ ∈ [0; 2π) as a finite limit in C. We characterize the possible "radial limit functions" U. This is an analog of the work of A. Roth for entire holomorphic functions. The results seems new even for harmonic functions.},

author = {Boivin, André, Paramonov, Peter V.},

journal = {Publicacions Matemàtiques},

keywords = {Operadores elípticos; Funciones analíticas; Ecuaciones de segundo orden; Ecuaciones diferenciales elípticas; homogeneous elliptic partial differential operator},

language = {eng},

number = {2},

pages = {509-519},

title = {On radial limit functions for entire solutions of second order elliptic equations in R2.},

url = {http://eudml.org/doc/41341},

volume = {42},

year = {1998},

}

TY - JOUR

AU - Boivin, André

AU - Paramonov, Peter V.

TI - On radial limit functions for entire solutions of second order elliptic equations in R2.

JO - Publicacions Matemàtiques

PY - 1998

VL - 42

IS - 2

SP - 509

EP - 519

AB - Given a homogeneous elliptic partial differential operator L of order two with constant complex coefficients in R2, we consider entire solutions of the equation Lu = 0 for whichlimr→∞ u(reiφ) =: U(eiφ)exists for all φ ∈ [0; 2π) as a finite limit in C. We characterize the possible "radial limit functions" U. This is an analog of the work of A. Roth for entire holomorphic functions. The results seems new even for harmonic functions.

LA - eng

KW - Operadores elípticos; Funciones analíticas; Ecuaciones de segundo orden; Ecuaciones diferenciales elípticas; homogeneous elliptic partial differential operator

UR - http://eudml.org/doc/41341

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.