Two weighted inequalities for convolution maximal operators.
Ana Lucía Bernardis; Francisco Javier Martín-Reyes
Publicacions Matemàtiques (2002)
- Volume: 46, Issue: 1, page 119-138
- ISSN: 0214-1493
Access Full Article
topAbstract
topHow to cite
topBernardis, Ana Lucía, and Martín-Reyes, Francisco Javier. "Two weighted inequalities for convolution maximal operators.." Publicacions Matemàtiques 46.1 (2002): 119-138. <http://eudml.org/doc/41446>.
@article{Bernardis2002,
	abstract = {Let φ: R → [0,∞) an integrable function such that φχ(-∞,0) = 0 and φ is decreasing in (0,∞). Let τhf(x) = f(x-h), with h ∈ R  \{0\} and fR(x) = 1/R f(x/R), with R > 0. In this paper we characterize the pair of weights (u, v) such that the operators Mτhφf(x) = supR>0|f| * [τhφ]R(x) are of weak type (p, p) with respect to (u, v), 1 < p < ∞.},
	author = {Bernardis, Ana Lucía, Martín-Reyes, Francisco Javier},
	journal = {Publicacions Matemàtiques},
	keywords = {Operador maximal de Hardy-Littlewood; Littlewood-Paley; Convolución; Desigualdades; weighted inequalities; convolution maximal operators;  class; Sawyer's classes},
	language = {eng},
	number = {1},
	pages = {119-138},
	title = {Two weighted inequalities for convolution maximal operators.},
	url = {http://eudml.org/doc/41446},
	volume = {46},
	year = {2002},
}
TY  - JOUR
AU  - Bernardis, Ana Lucía
AU  - Martín-Reyes, Francisco Javier
TI  - Two weighted inequalities for convolution maximal operators.
JO  - Publicacions Matemàtiques
PY  - 2002
VL  - 46
IS  - 1
SP  - 119
EP  - 138
AB  - Let φ: R → [0,∞) an integrable function such that φχ(-∞,0) = 0 and φ is decreasing in (0,∞). Let τhf(x) = f(x-h), with h ∈ R  {0} and fR(x) = 1/R f(x/R), with R > 0. In this paper we characterize the pair of weights (u, v) such that the operators Mτhφf(x) = supR>0|f| * [τhφ]R(x) are of weak type (p, p) with respect to (u, v), 1 < p < ∞.
LA  - eng
KW  - Operador maximal de Hardy-Littlewood; Littlewood-Paley; Convolución; Desigualdades; weighted inequalities; convolution maximal operators;  class; Sawyer's classes
UR  - http://eudml.org/doc/41446
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
