Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains.

Martin Dindos; Marius Mitrea

Publicacions Matemàtiques (2002)

  • Volume: 46, Issue: 2, page 353-403
  • ISSN: 0214-1493

Abstract

top
Extending recent work for the linear Poisson problem for the Laplacian in the framework of Sobolev-Besov spaces on Lipschitz domains by Jerison and Kenig [16], Fabes, Mendez and Mitrea [9], and Mitrea and Taylor [30], here we take up the task of developing a similar sharp theory for semilinear problems of the type Δu - N(x,u) = F(x), equipped with Dirichlet and Neumann boundary conditions.

How to cite

top

Dindos, Martin, and Mitrea, Marius. "Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains.." Publicacions Matemàtiques 46.2 (2002): 353-403. <http://eudml.org/doc/41457>.

@article{Dindos2002,
abstract = {Extending recent work for the linear Poisson problem for the Laplacian in the framework of Sobolev-Besov spaces on Lipschitz domains by Jerison and Kenig [16], Fabes, Mendez and Mitrea [9], and Mitrea and Taylor [30], here we take up the task of developing a similar sharp theory for semilinear problems of the type Δu - N(x,u) = F(x), equipped with Dirichlet and Neumann boundary conditions.},
author = {Dindos, Martin, Mitrea, Marius},
journal = {Publicacions Matemàtiques},
keywords = {Ecuaciones en derivadas parciales no lineales; Ecuaciones diferenciales elípticas; Operador laplaciano; Ecuación de Poisson; Problemas de valor de frontera; Dominios de Lipschitz; Integrales singulares; Espacios de Sobolev; Espacios de Besov; nonlinear equations; Lipschitz domains; elliptic PDE's; boundary value problems; Sobolev-Besov spaces.},
language = {eng},
number = {2},
pages = {353-403},
title = {Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains.},
url = {http://eudml.org/doc/41457},
volume = {46},
year = {2002},
}

TY - JOUR
AU - Dindos, Martin
AU - Mitrea, Marius
TI - Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains.
JO - Publicacions Matemàtiques
PY - 2002
VL - 46
IS - 2
SP - 353
EP - 403
AB - Extending recent work for the linear Poisson problem for the Laplacian in the framework of Sobolev-Besov spaces on Lipschitz domains by Jerison and Kenig [16], Fabes, Mendez and Mitrea [9], and Mitrea and Taylor [30], here we take up the task of developing a similar sharp theory for semilinear problems of the type Δu - N(x,u) = F(x), equipped with Dirichlet and Neumann boundary conditions.
LA - eng
KW - Ecuaciones en derivadas parciales no lineales; Ecuaciones diferenciales elípticas; Operador laplaciano; Ecuación de Poisson; Problemas de valor de frontera; Dominios de Lipschitz; Integrales singulares; Espacios de Sobolev; Espacios de Besov; nonlinear equations; Lipschitz domains; elliptic PDE's; boundary value problems; Sobolev-Besov spaces.
UR - http://eudml.org/doc/41457
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.