top
The aim of this note is to characterize the vectors g = (g1, . . . ,gk) of bounded holomorphic functions in the unit ball or in the unit polydisk of Cn such that the Corona is true for them in terms of the H2 Corona for measures on the boundary.
@article{Amar2003, abstract = {The aim of this note is to characterize the vectors g = (g1, . . . ,gk) of bounded holomorphic functions in the unit ball or in the unit polydisk of Cn such that the Corona is true for them in terms of the H2 Corona for measures on the boundary.}, author = {Amar, Eric}, journal = {Publicacions Matemàtiques}, keywords = {Funciones de varias variables complejas; Espacios de Hardy; Espacios de Bergman; Operadores de Toeplitz; corona problem; Toeplitz operator; Von Neumann minimax theorem}, language = {eng}, number = {2}, pages = {489-496}, title = {On the Toëplitz corona problem.}, url = {http://eudml.org/doc/41464}, volume = {47}, year = {2003}, }
TY - JOUR AU - Amar, Eric TI - On the Toëplitz corona problem. JO - Publicacions Matemàtiques PY - 2003 VL - 47 IS - 2 SP - 489 EP - 496 AB - The aim of this note is to characterize the vectors g = (g1, . . . ,gk) of bounded holomorphic functions in the unit ball or in the unit polydisk of Cn such that the Corona is true for them in terms of the H2 Corona for measures on the boundary. LA - eng KW - Funciones de varias variables complejas; Espacios de Hardy; Espacios de Bergman; Operadores de Toeplitz; corona problem; Toeplitz operator; Von Neumann minimax theorem UR - http://eudml.org/doc/41464 ER -