On the Toëplitz corona problem.

Eric Amar

Publicacions Matemàtiques (2003)

  • Volume: 47, Issue: 2, page 489-496
  • ISSN: 0214-1493

Abstract

top
The aim of this note is to characterize the vectors g = (g1, . . . ,gk) of bounded holomorphic functions in the unit ball or in the unit polydisk of Cn such that the Corona is true for them in terms of the H2 Corona for measures on the boundary.

How to cite

top

Amar, Eric. "On the Toëplitz corona problem.." Publicacions Matemàtiques 47.2 (2003): 489-496. <http://eudml.org/doc/41464>.

@article{Amar2003,
abstract = {The aim of this note is to characterize the vectors g = (g1, . . . ,gk) of bounded holomorphic functions in the unit ball or in the unit polydisk of Cn such that the Corona is true for them in terms of the H2 Corona for measures on the boundary.},
author = {Amar, Eric},
journal = {Publicacions Matemàtiques},
keywords = {Funciones de varias variables complejas; Espacios de Hardy; Espacios de Bergman; Operadores de Toeplitz; corona problem; Toeplitz operator; Von Neumann minimax theorem},
language = {eng},
number = {2},
pages = {489-496},
title = {On the Toëplitz corona problem.},
url = {http://eudml.org/doc/41464},
volume = {47},
year = {2003},
}

TY - JOUR
AU - Amar, Eric
TI - On the Toëplitz corona problem.
JO - Publicacions Matemàtiques
PY - 2003
VL - 47
IS - 2
SP - 489
EP - 496
AB - The aim of this note is to characterize the vectors g = (g1, . . . ,gk) of bounded holomorphic functions in the unit ball or in the unit polydisk of Cn such that the Corona is true for them in terms of the H2 Corona for measures on the boundary.
LA - eng
KW - Funciones de varias variables complejas; Espacios de Hardy; Espacios de Bergman; Operadores de Toeplitz; corona problem; Toeplitz operator; Von Neumann minimax theorem
UR - http://eudml.org/doc/41464
ER -

NotesEmbed ?

top

You must be logged in to post comments.