Déformation localisée de surfaces de Riemann.

Peter Haïssinsky

Publicacions Matemàtiques (2005)

  • Volume: 49, Issue: 1, page 249-255
  • ISSN: 0214-1493

Abstract

top
Let Y be a Riemann surface with compact boundary embedded into a hyperbolic Riemann surface of finite type X. It is proved that the space of deformations D of Y into X is an open subset of the Teichmüller space T(X) of X. Furthermore, D has compact closure if and only if Y is simply connected or isomorphic to a punctured disk, and D= T(X) if and only if the components of X Y are all disks or punctured disks.

How to cite

top

Haïssinsky, Peter. "Déformation localisée de surfaces de Riemann.." Publicacions Matemàtiques 49.1 (2005): 249-255. <http://eudml.org/doc/41563>.

@article{Haïssinsky2005,
author = {Haïssinsky, Peter},
journal = {Publicacions Matemàtiques},
keywords = {Superficies Riemann; Deformación; Geometría hiperbólica; Teichmüller theory; hyperbolic geometry; Riemann surface; simple closed curves},
language = {fre},
number = {1},
pages = {249-255},
title = {Déformation localisée de surfaces de Riemann.},
url = {http://eudml.org/doc/41563},
volume = {49},
year = {2005},
}

TY - JOUR
AU - Haïssinsky, Peter
TI - Déformation localisée de surfaces de Riemann.
JO - Publicacions Matemàtiques
PY - 2005
VL - 49
IS - 1
SP - 249
EP - 255
LA - fre
KW - Superficies Riemann; Deformación; Geometría hiperbólica; Teichmüller theory; hyperbolic geometry; Riemann surface; simple closed curves
UR - http://eudml.org/doc/41563
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.