When is the last degree solution of a Bézout identity nonnegative on the interval [-1,1]?
Tim N. T. Goodman; Charles A. Micchelli
RACSAM (2002)
- Volume: 96, Issue: 2, page 207-214
- ISSN: 1578-7303
Access Full Article
topAbstract
topHow to cite
topGoodman, Tim N. T., and Micchelli, Charles A.. "When is the last degree solution of a Bézout identity nonnegative on the interval [-1,1]?." RACSAM 96.2 (2002): 207-214. <http://eudml.org/doc/41631>.
@article{Goodman2002,
abstract = {We give conditions such that the least degree solution of a Bézout identity is nonnegative on the interval [-1,1].},
author = {Goodman, Tim N. T., Micchelli, Charles A.},
journal = {RACSAM},
keywords = {Anillos de Bezout; Polinomios; wavelet construction; filter design; Bezout identity},
language = {eng},
number = {2},
pages = {207-214},
title = {When is the last degree solution of a Bézout identity nonnegative on the interval [-1,1]?},
url = {http://eudml.org/doc/41631},
volume = {96},
year = {2002},
}
TY - JOUR
AU - Goodman, Tim N. T.
AU - Micchelli, Charles A.
TI - When is the last degree solution of a Bézout identity nonnegative on the interval [-1,1]?
JO - RACSAM
PY - 2002
VL - 96
IS - 2
SP - 207
EP - 214
AB - We give conditions such that the least degree solution of a Bézout identity is nonnegative on the interval [-1,1].
LA - eng
KW - Anillos de Bezout; Polinomios; wavelet construction; filter design; Bezout identity
UR - http://eudml.org/doc/41631
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.