Interior estimates for solutions of Abreu's equation.
Collectanea Mathematica (2005)
- Volume: 56, Issue: 2, page 103-142
- ISSN: 0010-0757
Access Full Article
topAbstract
topHow to cite
topDonaldson, Simon K.. "Interior estimates for solutions of Abreu's equation.." Collectanea Mathematica 56.2 (2005): 103-142. <http://eudml.org/doc/41824>.
@article{Donaldson2005,
abstract = {This paper develops various estimates for solutions of a nonlinear, fouth order PDE which corresponds to prescribing the scalar curvature of a toric Kähler metric. The results combine techniques from Riemannian geometry and from the theory of Monge-Ampère equations.},
author = {Donaldson, Simon K.},
journal = {Collectanea Mathematica},
keywords = {Geometría diferencial global; Variedades kählerianas; Toros geométricos; Ecuaciones en derivadas parciales no lineales; Monge-Ampère equation; Abreu's equation; a priori estimation of solutions; toric varieties; Kähler geometry},
language = {eng},
number = {2},
pages = {103-142},
title = {Interior estimates for solutions of Abreu's equation.},
url = {http://eudml.org/doc/41824},
volume = {56},
year = {2005},
}
TY - JOUR
AU - Donaldson, Simon K.
TI - Interior estimates for solutions of Abreu's equation.
JO - Collectanea Mathematica
PY - 2005
VL - 56
IS - 2
SP - 103
EP - 142
AB - This paper develops various estimates for solutions of a nonlinear, fouth order PDE which corresponds to prescribing the scalar curvature of a toric Kähler metric. The results combine techniques from Riemannian geometry and from the theory of Monge-Ampère equations.
LA - eng
KW - Geometría diferencial global; Variedades kählerianas; Toros geométricos; Ecuaciones en derivadas parciales no lineales; Monge-Ampère equation; Abreu's equation; a priori estimation of solutions; toric varieties; Kähler geometry
UR - http://eudml.org/doc/41824
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.