On generalized d'Alembert functional equation.

Mohamed Akkouchi; Allal Bakali; Belaid Bouikhalene; El Houcien El Qorachi

Extracta Mathematicae (2006)

  • Volume: 21, Issue: 1, page 67-82
  • ISSN: 0213-8743

Abstract

top
Let G be a locally compact group. Let σ be a continuous involution of G and let μ be a complex bounded measure. In this paper we study the generalized d'Alembert functional equationD(μ)    ∫G f(xty)dμ(t) + ∫G f(xtσ(y))dμ(t) = 2f(x)f(y) x, y ∈ G;where f: G → C to be determined is a measurable and essentially bounded function.

How to cite

top

Akkouchi, Mohamed, et al. "On generalized d'Alembert functional equation.." Extracta Mathematicae 21.1 (2006): 67-82. <http://eudml.org/doc/41851>.

@article{Akkouchi2006,
abstract = {Let G be a locally compact group. Let σ be a continuous involution of G and let μ be a complex bounded measure. In this paper we study the generalized d'Alembert functional equationD(μ)    ∫G f(xty)dμ(t) + ∫G f(xtσ(y))dμ(t) = 2f(x)f(y) x, y ∈ G;where f: G → C to be determined is a measurable and essentially bounded function.},
author = {Akkouchi, Mohamed, Bakali, Allal, Bouikhalene, Belaid, El Qorachi, El Houcien},
journal = {Extracta Mathematicae},
keywords = {Ecuaciones funcionales; Grupos de Lie; Grupo localmente compacto; Teoría de la representación; Operadores diferenciales; integral functional equation; Gelfand measure; locally compact Hausdorff group; commutative Banach algebra; Lie group},
language = {eng},
number = {1},
pages = {67-82},
title = {On generalized d'Alembert functional equation.},
url = {http://eudml.org/doc/41851},
volume = {21},
year = {2006},
}

TY - JOUR
AU - Akkouchi, Mohamed
AU - Bakali, Allal
AU - Bouikhalene, Belaid
AU - El Qorachi, El Houcien
TI - On generalized d'Alembert functional equation.
JO - Extracta Mathematicae
PY - 2006
VL - 21
IS - 1
SP - 67
EP - 82
AB - Let G be a locally compact group. Let σ be a continuous involution of G and let μ be a complex bounded measure. In this paper we study the generalized d'Alembert functional equationD(μ)    ∫G f(xty)dμ(t) + ∫G f(xtσ(y))dμ(t) = 2f(x)f(y) x, y ∈ G;where f: G → C to be determined is a measurable and essentially bounded function.
LA - eng
KW - Ecuaciones funcionales; Grupos de Lie; Grupo localmente compacto; Teoría de la representación; Operadores diferenciales; integral functional equation; Gelfand measure; locally compact Hausdorff group; commutative Banach algebra; Lie group
UR - http://eudml.org/doc/41851
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.