Generalization of Vélu's formulae for isogenies between elliptic curves.
Josep M. Miret Biosca; Ramiro Moreno; Anna Rio
Publicacions Matemàtiques (2007)
- Volume: 51, Issue: Extra, page 147-163
- ISSN: 0214-1493
Access Full Article
topAbstract
topHow to cite
topMiret Biosca, Josep M., Moreno, Ramiro, and Rio, Anna. "Generalization of Vélu's formulae for isogenies between elliptic curves.." Publicacions Matemàtiques 51.Extra (2007): 147-163. <http://eudml.org/doc/41919>.
@article{MiretBiosca2007,
abstract = {Given an elliptic curve E and a finite subgroup G, Vélu's formulae concern to a separable isogeny IG: E → E' with kernel G. In particular, for a point P ∈ E these formulae express the first elementary symmetric polynomial on the abscissas of the points in the set P+G as the difference between the abscissa of IG(P) and the first elementary symmetric polynomial on the abscissas of the nontrivial points of the kernel G. On the other hand, they express Weierstrass coefficients of E' as polynomials in the coefficients of E and two additional parameters: w0 = t and w1 = w. We generalize this by defining parameters wn for all n ≥ 0 and giving analogous formulae for all the elementary symmetric polynomials and the power sums on the abscissas of the points in P+G. Simultaneously, we obtain an efficient way of performing computations concerning the isogeny when G is a rational group.[Proceedings of the Primeras Jornadas de Teoría de Números (Vilanova i la Geltrú (Barcelona), 30 June - 2 July 2005)].},
author = {Miret Biosca, Josep M., Moreno, Ramiro, Rio, Anna},
journal = {Publicacions Matemàtiques},
keywords = {Teoría de números; Curvas elípticas; Geometría diofántica; elliptic curve; isogeny; rational subgroup},
language = {eng},
number = {Extra},
pages = {147-163},
title = {Generalization of Vélu's formulae for isogenies between elliptic curves.},
url = {http://eudml.org/doc/41919},
volume = {51},
year = {2007},
}
TY - JOUR
AU - Miret Biosca, Josep M.
AU - Moreno, Ramiro
AU - Rio, Anna
TI - Generalization of Vélu's formulae for isogenies between elliptic curves.
JO - Publicacions Matemàtiques
PY - 2007
VL - 51
IS - Extra
SP - 147
EP - 163
AB - Given an elliptic curve E and a finite subgroup G, Vélu's formulae concern to a separable isogeny IG: E → E' with kernel G. In particular, for a point P ∈ E these formulae express the first elementary symmetric polynomial on the abscissas of the points in the set P+G as the difference between the abscissa of IG(P) and the first elementary symmetric polynomial on the abscissas of the nontrivial points of the kernel G. On the other hand, they express Weierstrass coefficients of E' as polynomials in the coefficients of E and two additional parameters: w0 = t and w1 = w. We generalize this by defining parameters wn for all n ≥ 0 and giving analogous formulae for all the elementary symmetric polynomials and the power sums on the abscissas of the points in P+G. Simultaneously, we obtain an efficient way of performing computations concerning the isogeny when G is a rational group.[Proceedings of the Primeras Jornadas de Teoría de Números (Vilanova i la Geltrú (Barcelona), 30 June - 2 July 2005)].
LA - eng
KW - Teoría de números; Curvas elípticas; Geometría diofántica; elliptic curve; isogeny; rational subgroup
UR - http://eudml.org/doc/41919
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.