Compact embeddings of Brézis-Wainger type.
Fernando Cobos; Thomas Kühn; Tomas Schonbek
Revista Matemática Iberoamericana (2006)
- Volume: 22, Issue: 1, page 305-322
- ISSN: 0213-2230
Access Full Article
topAbstract
topHow to cite
topCobos, Fernando, Kühn, Thomas, and Schonbek, Tomas. "Compact embeddings of Brézis-Wainger type.." Revista Matemática Iberoamericana 22.1 (2006): 305-322. <http://eudml.org/doc/41974>.
@article{Cobos2006,
abstract = {Let Ω be a bounded domain in Rn and denote by idΩ the restriction operator from the Besov space Bpq1+n/p(Rn) into the generalized Lipschitz space Lip(1,-α)(Ω). We study the sequence of entropy numbers of this operator and prove that, up to logarithmic factors, it behaves asymptotically like ek(idΩ) ~ k-1/p if α > max (1 + 2/p + 1/q, 1/p). Our estimates improve previous results by Edmunds and Haroske.},
author = {Cobos, Fernando, Kühn, Thomas, Schonbek, Tomas},
journal = {Revista Matemática Iberoamericana},
keywords = {Inmersiones; Compacidad; Números de entropía; Espacios de Sobolev; Espacios de Besov; Espacio de Lipschitz; entropy numbers; limiting embeddings},
language = {eng},
number = {1},
pages = {305-322},
title = {Compact embeddings of Brézis-Wainger type.},
url = {http://eudml.org/doc/41974},
volume = {22},
year = {2006},
}
TY - JOUR
AU - Cobos, Fernando
AU - Kühn, Thomas
AU - Schonbek, Tomas
TI - Compact embeddings of Brézis-Wainger type.
JO - Revista Matemática Iberoamericana
PY - 2006
VL - 22
IS - 1
SP - 305
EP - 322
AB - Let Ω be a bounded domain in Rn and denote by idΩ the restriction operator from the Besov space Bpq1+n/p(Rn) into the generalized Lipschitz space Lip(1,-α)(Ω). We study the sequence of entropy numbers of this operator and prove that, up to logarithmic factors, it behaves asymptotically like ek(idΩ) ~ k-1/p if α > max (1 + 2/p + 1/q, 1/p). Our estimates improve previous results by Edmunds and Haroske.
LA - eng
KW - Inmersiones; Compacidad; Números de entropía; Espacios de Sobolev; Espacios de Besov; Espacio de Lipschitz; entropy numbers; limiting embeddings
UR - http://eudml.org/doc/41974
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.