Compact embeddings of Brézis-Wainger type.

Fernando Cobos; Thomas Kühn; Tomas Schonbek

Revista Matemática Iberoamericana (2006)

  • Volume: 22, Issue: 1, page 305-322
  • ISSN: 0213-2230

Abstract

top
Let Ω be a bounded domain in Rn and denote by idΩ the restriction operator from the Besov space Bpq1+n/p(Rn) into the generalized Lipschitz space Lip(1,-α)(Ω). We study the sequence of entropy numbers of this operator and prove that, up to logarithmic factors, it behaves asymptotically like ek(idΩ) ~ k-1/p if α > max (1 + 2/p + 1/q, 1/p). Our estimates improve previous results by Edmunds and Haroske.

How to cite

top

Cobos, Fernando, Kühn, Thomas, and Schonbek, Tomas. "Compact embeddings of Brézis-Wainger type.." Revista Matemática Iberoamericana 22.1 (2006): 305-322. <http://eudml.org/doc/41974>.

@article{Cobos2006,
abstract = {Let Ω be a bounded domain in Rn and denote by idΩ the restriction operator from the Besov space Bpq1+n/p(Rn) into the generalized Lipschitz space Lip(1,-α)(Ω). We study the sequence of entropy numbers of this operator and prove that, up to logarithmic factors, it behaves asymptotically like ek(idΩ) ~ k-1/p if α &gt; max (1 + 2/p + 1/q, 1/p). Our estimates improve previous results by Edmunds and Haroske.},
author = {Cobos, Fernando, Kühn, Thomas, Schonbek, Tomas},
journal = {Revista Matemática Iberoamericana},
keywords = {Inmersiones; Compacidad; Números de entropía; Espacios de Sobolev; Espacios de Besov; Espacio de Lipschitz; entropy numbers; limiting embeddings},
language = {eng},
number = {1},
pages = {305-322},
title = {Compact embeddings of Brézis-Wainger type.},
url = {http://eudml.org/doc/41974},
volume = {22},
year = {2006},
}

TY - JOUR
AU - Cobos, Fernando
AU - Kühn, Thomas
AU - Schonbek, Tomas
TI - Compact embeddings of Brézis-Wainger type.
JO - Revista Matemática Iberoamericana
PY - 2006
VL - 22
IS - 1
SP - 305
EP - 322
AB - Let Ω be a bounded domain in Rn and denote by idΩ the restriction operator from the Besov space Bpq1+n/p(Rn) into the generalized Lipschitz space Lip(1,-α)(Ω). We study the sequence of entropy numbers of this operator and prove that, up to logarithmic factors, it behaves asymptotically like ek(idΩ) ~ k-1/p if α &gt; max (1 + 2/p + 1/q, 1/p). Our estimates improve previous results by Edmunds and Haroske.
LA - eng
KW - Inmersiones; Compacidad; Números de entropía; Espacios de Sobolev; Espacios de Besov; Espacio de Lipschitz; entropy numbers; limiting embeddings
UR - http://eudml.org/doc/41974
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.