A geometry on the space of probabilities (I). The finite dimensional case.
Revista Matemática Iberoamericana (2006)
- Volume: 22, Issue: 2, page 545-558
- ISSN: 0213-2230
Access Full Article
topAbstract
topHow to cite
topGzyl, Henryk, and Recht, Lázaro. "A geometry on the space of probabilities (I). The finite dimensional case.." Revista Matemática Iberoamericana 22.2 (2006): 545-558. <http://eudml.org/doc/41983>.
@article{Gzyl2006,
abstract = {In this note we provide a natural way of defining exponential coordinates on the class of probabilities on the set Ω = [1,n] or on P = \{p = (p1, ..., pn) ∈ Rn| pi > 0; Σi=1n pi = 1\}. For that we have to regard P as a projective space and the exponential coordinates will be related to geodesic flows in Cn.},
author = {Gzyl, Henryk, Recht, Lázaro},
journal = {Revista Matemática Iberoamericana},
keywords = {C*-álgebras; Espacios de probabilidad; Flujos geodésicos; Geometría diferencial global; -algebra; reductive homogeneous space; lifting of geodesics; exponential families; maximum entropy method},
language = {eng},
number = {2},
pages = {545-558},
title = {A geometry on the space of probabilities (I). The finite dimensional case.},
url = {http://eudml.org/doc/41983},
volume = {22},
year = {2006},
}
TY - JOUR
AU - Gzyl, Henryk
AU - Recht, Lázaro
TI - A geometry on the space of probabilities (I). The finite dimensional case.
JO - Revista Matemática Iberoamericana
PY - 2006
VL - 22
IS - 2
SP - 545
EP - 558
AB - In this note we provide a natural way of defining exponential coordinates on the class of probabilities on the set Ω = [1,n] or on P = {p = (p1, ..., pn) ∈ Rn| pi > 0; Σi=1n pi = 1}. For that we have to regard P as a projective space and the exponential coordinates will be related to geodesic flows in Cn.
LA - eng
KW - C*-álgebras; Espacios de probabilidad; Flujos geodésicos; Geometría diferencial global; -algebra; reductive homogeneous space; lifting of geodesics; exponential families; maximum entropy method
UR - http://eudml.org/doc/41983
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.