# Classification of finite groups with many minimal subgroups and with the number of conjugacy classes of G/S(G) equal to 8.

Antonio Vera López; Jesús María Arregi Lizarraga; Francisco José Vera López

Collectanea Mathematica (1990)

- Volume: 41, Issue: 3, page 243-279
- ISSN: 0010-0757

## Access Full Article

top## Abstract

top## How to cite

topVera López, Antonio, Arregi Lizarraga, Jesús María, and Vera López, Francisco José. "Classification of finite groups with many minimal subgroups and with the number of conjugacy classes of G/S(G) equal to 8.." Collectanea Mathematica 41.3 (1990): 243-279. <http://eudml.org/doc/42396>.

@article{VeraLópez1990,

abstract = {In this paper we classify all the finite groups satisfying r(G/S(G))=8 and ß(G)=r(G) - a(G) - 1, where r(G) is the number of conjugacy classes of G, ß(G) is the number of minimal normal subgroups of G, S(G) the socle of G and a(G) the number of conjugacy classes of G out of S(G). These results are a contribution to the general problem of the classification of the finite groups according to the number of conjugacy classes.},

author = {Vera López, Antonio, Arregi Lizarraga, Jesús María, Vera López, Francisco José},

journal = {Collectanea Mathematica},

keywords = {Teoría de grupos; Grupos finitos; Familias de subgrupos; Clases de conjugación; finite groups; number of conjugacy classes; socle},

language = {eng},

number = {3},

pages = {243-279},

title = {Classification of finite groups with many minimal subgroups and with the number of conjugacy classes of G/S(G) equal to 8.},

url = {http://eudml.org/doc/42396},

volume = {41},

year = {1990},

}

TY - JOUR

AU - Vera López, Antonio

AU - Arregi Lizarraga, Jesús María

AU - Vera López, Francisco José

TI - Classification of finite groups with many minimal subgroups and with the number of conjugacy classes of G/S(G) equal to 8.

JO - Collectanea Mathematica

PY - 1990

VL - 41

IS - 3

SP - 243

EP - 279

AB - In this paper we classify all the finite groups satisfying r(G/S(G))=8 and ß(G)=r(G) - a(G) - 1, where r(G) is the number of conjugacy classes of G, ß(G) is the number of minimal normal subgroups of G, S(G) the socle of G and a(G) the number of conjugacy classes of G out of S(G). These results are a contribution to the general problem of the classification of the finite groups according to the number of conjugacy classes.

LA - eng

KW - Teoría de grupos; Grupos finitos; Familias de subgrupos; Clases de conjugación; finite groups; number of conjugacy classes; socle

UR - http://eudml.org/doc/42396

ER -