# Acknowledgement of priority: Separable quotients of Banach spaces.

Collectanea Mathematica (1998)

- Volume: 49, Issue: 1, page 133-133
- ISSN: 0010-0757

## Access Full Article

top## Abstract

top## How to cite

topWójtowicz, Marek. "Acknowledgement of priority: Separable quotients of Banach spaces.." Collectanea Mathematica 49.1 (1998): 133-133. <http://eudml.org/doc/42718>.

@article{Wójtowicz1998,

abstract = {In previous papers, it is proved, among other things, that every infinite dimensional sigma-Dedekind complete Banach lattice has a separable quotient. It has come to my attention that L. Weis proved this result without assuming sigma-Dedekind completeness; the proof is based, however, on the deep theorem of J. Hagler and W.B. Johnson concerning the structure of dual balls of Banach spaces and therefore cannot be applied simply to the case of locally convex solid topologically complete Riesz spaces.},

author = {Wójtowicz, Marek},

journal = {Collectanea Mathematica},

keywords = {Espacios de Banach; Espacio reflexivo; Retículo de Banach; Base de Schauder; Espacio cociente; Sistema débil de subespacios},

language = {eng},

number = {1},

pages = {133-133},

title = {Acknowledgement of priority: Separable quotients of Banach spaces.},

url = {http://eudml.org/doc/42718},

volume = {49},

year = {1998},

}

TY - JOUR

AU - Wójtowicz, Marek

TI - Acknowledgement of priority: Separable quotients of Banach spaces.

JO - Collectanea Mathematica

PY - 1998

VL - 49

IS - 1

SP - 133

EP - 133

AB - In previous papers, it is proved, among other things, that every infinite dimensional sigma-Dedekind complete Banach lattice has a separable quotient. It has come to my attention that L. Weis proved this result without assuming sigma-Dedekind completeness; the proof is based, however, on the deep theorem of J. Hagler and W.B. Johnson concerning the structure of dual balls of Banach spaces and therefore cannot be applied simply to the case of locally convex solid topologically complete Riesz spaces.

LA - eng

KW - Espacios de Banach; Espacio reflexivo; Retículo de Banach; Base de Schauder; Espacio cociente; Sistema débil de subespacios

UR - http://eudml.org/doc/42718

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.