On the total (non absolute) curvature of a even dimensional submanifold Xn immersed in Rn+2.
Revista Matemática de la Universidad Complutense de Madrid (1994)
- Volume: 7, Issue: 2, page 279-287
- ISSN: 1139-1138
Access Full Article
topAbstract
topHow to cite
topNaveira, A. M.. "On the total (non absolute) curvature of a even dimensional submanifold Xn immersed in Rn+2.." Revista Matemática de la Universidad Complutense de Madrid 7.2 (1994): 279-287. <http://eudml.org/doc/44067>.
@article{Naveira1994,
abstract = {The total curvatures of the submanifolds immersed in the Euclidean space have been studied mainly by Santaló and Chern-Kuiper. In this paper we give geometrical and topological interpretation of the total (non absolute) curvatures of the even dimensional submanifolds immersed in Rn+2. This gives a generalization of two results obtained by Santaló.},
author = {Naveira, A. M.},
journal = {Revista Matemática de la Universidad Complutense de Madrid},
keywords = {Subvariedades; Variedades compactas; Curvatura; Espacio euclídeo; total curvature; Grassmann manifold; curvature measures; exterior differential forms; curvature tensor},
language = {eng},
number = {2},
pages = {279-287},
title = {On the total (non absolute) curvature of a even dimensional submanifold Xn immersed in Rn+2.},
url = {http://eudml.org/doc/44067},
volume = {7},
year = {1994},
}
TY - JOUR
AU - Naveira, A. M.
TI - On the total (non absolute) curvature of a even dimensional submanifold Xn immersed in Rn+2.
JO - Revista Matemática de la Universidad Complutense de Madrid
PY - 1994
VL - 7
IS - 2
SP - 279
EP - 287
AB - The total curvatures of the submanifolds immersed in the Euclidean space have been studied mainly by Santaló and Chern-Kuiper. In this paper we give geometrical and topological interpretation of the total (non absolute) curvatures of the even dimensional submanifolds immersed in Rn+2. This gives a generalization of two results obtained by Santaló.
LA - eng
KW - Subvariedades; Variedades compactas; Curvatura; Espacio euclídeo; total curvature; Grassmann manifold; curvature measures; exterior differential forms; curvature tensor
UR - http://eudml.org/doc/44067
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.