# Some geometric properties concerning fixed point theory.

Revista Matemática de la Universidad Complutense de Madrid (1996)

- Volume: 9, Issue: Extr., page 109-124
- ISSN: 1139-1138

## Access Full Article

top## Abstract

top## How to cite

topDomínguez Benavides, Tomás. "Some geometric properties concerning fixed point theory.." Revista Matemática de la Universidad Complutense de Madrid 9.Extr. (1996): 109-124. <http://eudml.org/doc/44221>.

@article{DomínguezBenavides1996,

abstract = {The Fixed Point Theory for nonexpansive mappings is strongly based upon the geometry of the ambient Banach space. In section 1 we state the role which is played by the multidimensional convexity and smoothness in this theory. In section 2 we study the computation of the normal structure coefficient in finite dimensional lp-spaces and its connection with several classic geometric problems.},

author = {Domínguez Benavides, Tomás},

journal = {Revista Matemática de la Universidad Complutense de Madrid},

keywords = {Espacios de Banach; Geometría de subespacios; Teorema de punto fijo; Aplicación contractiva; Convexidad; Operador no lineal; Hipersuperficie lisa; fixed point theory; nonexpansive maps; geometry of Banach spaces; multidimensional convexity; smoothness properties; normal structure; finite-dimensional -spaces},

language = {eng},

number = {Extr.},

pages = {109-124},

title = {Some geometric properties concerning fixed point theory.},

url = {http://eudml.org/doc/44221},

volume = {9},

year = {1996},

}

TY - JOUR

AU - Domínguez Benavides, Tomás

TI - Some geometric properties concerning fixed point theory.

JO - Revista Matemática de la Universidad Complutense de Madrid

PY - 1996

VL - 9

IS - Extr.

SP - 109

EP - 124

AB - The Fixed Point Theory for nonexpansive mappings is strongly based upon the geometry of the ambient Banach space. In section 1 we state the role which is played by the multidimensional convexity and smoothness in this theory. In section 2 we study the computation of the normal structure coefficient in finite dimensional lp-spaces and its connection with several classic geometric problems.

LA - eng

KW - Espacios de Banach; Geometría de subespacios; Teorema de punto fijo; Aplicación contractiva; Convexidad; Operador no lineal; Hipersuperficie lisa; fixed point theory; nonexpansive maps; geometry of Banach spaces; multidimensional convexity; smoothness properties; normal structure; finite-dimensional -spaces

UR - http://eudml.org/doc/44221

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.