Analyse mathématique d'un système de transport-diffusión-réaction modélisant la restauration

P. Fabrie; P. Rasetarinera

Revista Matemática de la Universidad Complutense de Madrid (1996)

  • Volume: 9, Issue: 2, page 393-433
  • ISSN: 1139-1138

Abstract

top
In this paper, a mathematical analysis of in-situ biorestoration is presented. Mathematical formulation of such process leads to a system of non-linear partial differential equations coupled with ordinary differential equations. First, we introduce a notion of weak solution then we prove the existence of at least one such a solution by a linearization technique used in Fabrie and Langlais (1992). Positivity and uniform bound for the substrates concentration is derived from the maximum principle while some regularity properties, for the pressure and velocity, are obtained from a local Meyers lemma (Bensoussan et al (1978), Meyers (1963)). Next, assuming some regularity on the solution, an uniqueness result is presented. Asymptotical behavior for the contaminant is also studied.

How to cite

top

Fabrie, P., and Rasetarinera, P.. "Approximation of the viscosity solution of a Hamilton-Jacobi problem. ." Revista Matemática de la Universidad Complutense de Madrid 9.2 (1996): 393-433. <http://eudml.org/doc/44235>.

@article{Fabrie1996,
author = {Fabrie, P., Rasetarinera, P.},
journal = {Revista Matemática de la Universidad Complutense de Madrid},
keywords = {Medios porosos; Filtración; Modelos biofísicos; Contaminación del suelo; Ecuaciones no lineales; Fluidos incompresibles; Problema de contorno; Viscosidad; viscosity solutions},
language = {fre},
number = {2},
pages = {393-433},
title = {Approximation of the viscosity solution of a Hamilton-Jacobi problem. },
url = {http://eudml.org/doc/44235},
volume = {9},
year = {1996},
}

TY - JOUR
AU - Fabrie, P.
AU - Rasetarinera, P.
TI - Approximation of the viscosity solution of a Hamilton-Jacobi problem.
JO - Revista Matemática de la Universidad Complutense de Madrid
PY - 1996
VL - 9
IS - 2
SP - 393
EP - 433
LA - fre
KW - Medios porosos; Filtración; Modelos biofísicos; Contaminación del suelo; Ecuaciones no lineales; Fluidos incompresibles; Problema de contorno; Viscosidad; viscosity solutions
UR - http://eudml.org/doc/44235
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.