# Non-maximal cyclic group actions on compact Riemann surfaces.

Revista Matemática de la Universidad Complutense de Madrid (1997)

- Volume: 10, Issue: 2, page 423-439
- ISSN: 1139-1138

## Access Full Article

top## Abstract

top## How to cite

topSingerman, David, and Watson, Paul. "Non-maximal cyclic group actions on compact Riemann surfaces.." Revista Matemática de la Universidad Complutense de Madrid 10.2 (1997): 423-439. <http://eudml.org/doc/44277>.

@article{Singerman1997,

abstract = {We say that a finite group G of automorphisms of a Riemann surface X is non-maximal in genus g if (i) G acts as a group of automorphisms of some compact Riemann surface Xg of genus g and (ii), for all such surfaces Xg , |Aut Xg| > |G|. In this paper we investigate the case where G is a cyclic group Cn of order n. If Cn acts on only finitely many surfaces of genus g, then we completely solve the problem of finding all such pairs (n,g).},

author = {Singerman, David, Watson, Paul},

journal = {Revista Matemática de la Universidad Complutense de Madrid},

keywords = {Grupos de automorfismos; Superficies Riemann; Funciones de variable compleja; Grupos cíclicos; Variedades compactas; groups of automorphisms; compact Riemann surfaces; cyclic groups},

language = {eng},

number = {2},

pages = {423-439},

title = {Non-maximal cyclic group actions on compact Riemann surfaces.},

url = {http://eudml.org/doc/44277},

volume = {10},

year = {1997},

}

TY - JOUR

AU - Singerman, David

AU - Watson, Paul

TI - Non-maximal cyclic group actions on compact Riemann surfaces.

JO - Revista Matemática de la Universidad Complutense de Madrid

PY - 1997

VL - 10

IS - 2

SP - 423

EP - 439

AB - We say that a finite group G of automorphisms of a Riemann surface X is non-maximal in genus g if (i) G acts as a group of automorphisms of some compact Riemann surface Xg of genus g and (ii), for all such surfaces Xg , |Aut Xg| > |G|. In this paper we investigate the case where G is a cyclic group Cn of order n. If Cn acts on only finitely many surfaces of genus g, then we completely solve the problem of finding all such pairs (n,g).

LA - eng

KW - Grupos de automorfismos; Superficies Riemann; Funciones de variable compleja; Grupos cíclicos; Variedades compactas; groups of automorphisms; compact Riemann surfaces; cyclic groups

UR - http://eudml.org/doc/44277

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.