Non-maximal cyclic group actions on compact Riemann surfaces.
Revista Matemática de la Universidad Complutense de Madrid (1997)
- Volume: 10, Issue: 2, page 423-439
- ISSN: 1139-1138
Access Full Article
topAbstract
topHow to cite
topSingerman, David, and Watson, Paul. "Non-maximal cyclic group actions on compact Riemann surfaces.." Revista Matemática de la Universidad Complutense de Madrid 10.2 (1997): 423-439. <http://eudml.org/doc/44277>.
@article{Singerman1997,
abstract = {We say that a finite group G of automorphisms of a Riemann surface X is non-maximal in genus g if (i) G acts as a group of automorphisms of some compact Riemann surface Xg of genus g and (ii), for all such surfaces Xg , |Aut Xg| > |G|. In this paper we investigate the case where G is a cyclic group Cn of order n. If Cn acts on only finitely many surfaces of genus g, then we completely solve the problem of finding all such pairs (n,g).},
author = {Singerman, David, Watson, Paul},
journal = {Revista Matemática de la Universidad Complutense de Madrid},
keywords = {Grupos de automorfismos; Superficies Riemann; Funciones de variable compleja; Grupos cíclicos; Variedades compactas; groups of automorphisms; compact Riemann surfaces; cyclic groups},
language = {eng},
number = {2},
pages = {423-439},
title = {Non-maximal cyclic group actions on compact Riemann surfaces.},
url = {http://eudml.org/doc/44277},
volume = {10},
year = {1997},
}
TY - JOUR
AU - Singerman, David
AU - Watson, Paul
TI - Non-maximal cyclic group actions on compact Riemann surfaces.
JO - Revista Matemática de la Universidad Complutense de Madrid
PY - 1997
VL - 10
IS - 2
SP - 423
EP - 439
AB - We say that a finite group G of automorphisms of a Riemann surface X is non-maximal in genus g if (i) G acts as a group of automorphisms of some compact Riemann surface Xg of genus g and (ii), for all such surfaces Xg , |Aut Xg| > |G|. In this paper we investigate the case where G is a cyclic group Cn of order n. If Cn acts on only finitely many surfaces of genus g, then we completely solve the problem of finding all such pairs (n,g).
LA - eng
KW - Grupos de automorfismos; Superficies Riemann; Funciones de variable compleja; Grupos cíclicos; Variedades compactas; groups of automorphisms; compact Riemann surfaces; cyclic groups
UR - http://eudml.org/doc/44277
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.