A regularity result for p-harmonic equations with measure data.
Menita Carozza; Antonia Passarelli di Napoli
Collectanea Mathematica (2004)
- Volume: 55, Issue: 1, page 11-19
- ISSN: 0010-0757
Access Full Article
topAbstract
topHow to cite
topCarozza, Menita, and Passarelli di Napoli, Antonia. "A regularity result for p-harmonic equations with measure data.." Collectanea Mathematica 55.1 (2004): 11-19. <http://eudml.org/doc/44325>.
@article{Carozza2004,
abstract = {We examine the p-harmonic equation div |grad u|(p-2). grad u = mu, where mu is a bounded Radon measure. We determine a range of p's for which solutions to the equation verify an a priori estimate. For such p's we also prove a higher integrability result.},
author = {Carozza, Menita, Passarelli di Napoli, Antonia},
journal = {Collectanea Mathematica},
keywords = {Ecuaciones diferenciales en derivadas parciales; Regularidad; Medida de Radon; Estimador a priori},
language = {eng},
number = {1},
pages = {11-19},
title = {A regularity result for p-harmonic equations with measure data.},
url = {http://eudml.org/doc/44325},
volume = {55},
year = {2004},
}
TY - JOUR
AU - Carozza, Menita
AU - Passarelli di Napoli, Antonia
TI - A regularity result for p-harmonic equations with measure data.
JO - Collectanea Mathematica
PY - 2004
VL - 55
IS - 1
SP - 11
EP - 19
AB - We examine the p-harmonic equation div |grad u|(p-2). grad u = mu, where mu is a bounded Radon measure. We determine a range of p's for which solutions to the equation verify an a priori estimate. For such p's we also prove a higher integrability result.
LA - eng
KW - Ecuaciones diferenciales en derivadas parciales; Regularidad; Medida de Radon; Estimador a priori
UR - http://eudml.org/doc/44325
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.