# A regularity result for p-harmonic equations with measure data.

Menita Carozza; Antonia Passarelli di Napoli

Collectanea Mathematica (2004)

- Volume: 55, Issue: 1, page 11-19
- ISSN: 0010-0757

## Access Full Article

top## Abstract

top## How to cite

topCarozza, Menita, and Passarelli di Napoli, Antonia. "A regularity result for p-harmonic equations with measure data.." Collectanea Mathematica 55.1 (2004): 11-19. <http://eudml.org/doc/44325>.

@article{Carozza2004,

abstract = {We examine the p-harmonic equation div |grad u|(p-2). grad u = mu, where mu is a bounded Radon measure. We determine a range of p's for which solutions to the equation verify an a priori estimate. For such p's we also prove a higher integrability result.},

author = {Carozza, Menita, Passarelli di Napoli, Antonia},

journal = {Collectanea Mathematica},

keywords = {Ecuaciones diferenciales en derivadas parciales; Regularidad; Medida de Radon; Estimador a priori},

language = {eng},

number = {1},

pages = {11-19},

title = {A regularity result for p-harmonic equations with measure data.},

url = {http://eudml.org/doc/44325},

volume = {55},

year = {2004},

}

TY - JOUR

AU - Carozza, Menita

AU - Passarelli di Napoli, Antonia

TI - A regularity result for p-harmonic equations with measure data.

JO - Collectanea Mathematica

PY - 2004

VL - 55

IS - 1

SP - 11

EP - 19

AB - We examine the p-harmonic equation div |grad u|(p-2). grad u = mu, where mu is a bounded Radon measure. We determine a range of p's for which solutions to the equation verify an a priori estimate. For such p's we also prove a higher integrability result.

LA - eng

KW - Ecuaciones diferenciales en derivadas parciales; Regularidad; Medida de Radon; Estimador a priori

UR - http://eudml.org/doc/44325

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.